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Probably the most adequate indexing technique in practice is the inverted
file. As we have shown throughout the chapter, many hidden details in other
structures make them harder to use and less efficient in practice, as well as less
flexible for dealing with new types of queries. These structures, however, still
find application in restricted areas such as genetic databases (for suffix trees
and arrays, for the relatively small texts used and their need to pose specialized
queries) or some office systems (for signature files, because the text is rarely
queried in fact).

The main trends in indexing and searching textual databases today are

e Text collections are becoming huge. This poses more demanding re-
quirements at all levels, and solutions previously affordable are not any
more. On the other hand, the speed of the processors and the relative
slowness of external devices have changed what a few years ago were rea-
sonable options (e.g., it is better to keep a text compressed because reading
less text from disk and decompressing in main memory pays off).

e Searching is becoming more complex. As the text databases grow
and become more heterogeneous and error-prone, enhanced query facilities
are required, such as exploiting the text structure or allowing errors in
the text. Good support for extended queries is becoming important in the
evaluation of a text retrieval system.

e Compression is becoming a star in the field. Because of the changes
mentioned in the time cost of processors and external devices, and because
of new developments in the area, text retrieval and compression are no
longer regarded as disjoint activities. Direct indexing and searching on
compressed text provides better (sometimes much better) time performance
and less space overhead at the same time. Other techniques such as block
addressing trade space for processor time.

8.10 Bibliographic Discussion

A detailed explanation of a full inverted index and its construction and querying
process can be found in [26]. This work also includes an analysis of the algo-
rithms on inverted lists using the distribution of natural language. The in-place
construction is described in [572]. Another construction algorithm is presented
in [341]. _

The idea of block addressing inverted indices was first presented in a system
called Glimpse [540], which also first exposed the idea of performing complex
pattern matching using the vocabulary of the inverted index. Block addressing
indices are analyzed in [42], where some performance improvements are proposed.
The variant that indexes sequences instead of words has been implemented in a
system called Grampse, which is desctibed in [497].

Suffix arrays were presented in [538] together with the algorithm to build
them in O(nlogn) character comparisons. They were independently discovered
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by [309] under the name of ‘PAT arrays.’ The algorithm to build large suffix
arrays is presented in [311]. The use of supra-indices over suffix array is proposed
in [37], while the modified binary search techniques to reduce disk seek time are
presented in [56]. The linear-time construction of suffix trees is described in
[780].

The material on signature files is based on [243]. The different alternative
ways of storing the signature file are explained in [242].

The original references for the sequential search algorithms are: KMP [447],
BM [110], BMH [376], BMS [751], Shift-Or [39], BDM [205] and BNDM [592].
The multipattern versions are found in [9, 179], and MultiBDM in [196]. Many
enhancements of bit-parallelism to support extended patterns and allow errors
are presented in [837]. Many ideas from that paper were implemented in a widely
distributed software for online searching called Agrep (836].

The reader interested in more details about sequential searching algorithms
may look for the original references or in good books on algorithms such as [310,
196].

One source for the classical solution to approximate string matching is
[716). An O(kn) worst-case algorithm is described in [480]. The use of a DFA is
proposed in {781]. The bit-parallel approach to this problem started in [837], al-
though currently the fastest bit-parallel algorithms are [583] and [43]. Among all
the filtering algorithms, the fastest one in practice is based on an idea presented
in [837], later enhanced in [45], and finally implemented in [43].

A good source from which to learn about regular expressions and building
a DFA is [375]. The bit-parallel implementation of the NFA is explained in [837].
Regular expression searching on suffix trees is described in [40], while searching
allowing errors is presented in [779)].

The Huffman coding was first presented in [386], while the word-oriented
alternative is proposed in {571]. Sequential searching on text compressed using
that technique is described in [577]. Compression used in combination with
inverted files is described in {850], with suffix trees in [430], with suffix arrays
in [575], and with signature files in [243, 242]. A good general reference on
compression is [78].



Chapter 9
Parallel and Distributed IR

by Eric Brown

0.1 Introduction

The volume of electronic text available online today is staggering. By many
accounts, the World Wide Web alone contains over 200 million pages of text,
comprising nearly 500 gigabytes of data. Moreover, the Web (see Chapter 13) has
been growing at an exponential rate, nearly doubling in size every six months.
Large information service providers, such as LEXIS-NEXIS (see Chapter 14),
have amassed document databases that reach into the terabytes. On a slightly
smaller scale, the largest corporate intranets now contain over a million Web
pages. Even private collections of online documents stored on personal computers
are growing larger as disk space becomes cheaper and electronic content becomes
easier to produce, download, and store.

As document collections grow larger, they become more expensive to man-
age with an information retrieval system. Searching and indexing costs grow
with the size of the underlying document collection; larger document collections
invariably result in longer response times. As more documents are added to the
system, performance may deteriorate to the point where the system is no longer
usable. Furthermore, the economic survival of commercial systems and Web
search engines depends on their ability to provide high query processing rates.
In fact, most of a Web search company’s gross income comes from selling ‘ad-
vertising impressions’ (advertising banners displayed at the user’s screen) whose
number is proportional to the number of query requests attended.

To support the demanding requirements of modern search environments,
we must turn to alternative architectures and algorithms. In this chapter we
explore parallel and distributed information retrieval techniques. The application
of parallelism can greatly enhance our ability to scale traditional information
retrieval algorithms and support larger and larger document collections.

We continue this introduction with a review of parallel computing and
parallel program performance measures. In section 9.2 we explore techniques for
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implementing information retrieval algorithms on parallel platforms, including
inverted file and signature file methods. In section 9.3, we turn to distributed
information retrieval and approaches to collection partitioning, source selection,
and distributed results merging (often called collection fusion). We discuss future
trends in section 9.4, and conclude with a bibliographic discussion in section 9.5.

9.1.1 Paraliel Computing

Parallel computing is the simultaneous application of multiple processors to solve
a single problem, where each processor works on a different part of the problem.
With parallel computing, the overall time required to solve the problem can be
reduced to the amount of time required by the longest running part. As long as
the problem can be further decomposed into more parts that will run in parallel,
we can add more processors to the system, reduce the time required to solve the
problem, and scale up to larger problems.

Processors can be combined in a variety of ways to form parallel architec-
tures. Flynn [259] has defined a commonly used taxonomy of parallel architec-
tures based on the number of the instruction and data streams in the architecture.
The taxonomy includes four classes:

SISD single instructicn stream, single data stream
o SIMD single instruction stream, multiple data stream
e MISD multiple instruction stream, single data stream

e MIMD multiple instruction stream, multiple data stream.

The SISD class includes the traditional von Neumann [134] computer run-
ning sequential programs, e.g., uniprocessor personal computers. SIMD comput-
ers consist of N processors operating on N data streams, with each processor
executing the same instruction at the same time. Machines in this class are
often massively parallel computers with many relatively simple processors, a
communication network between the processors, and a control unit that super-
vises the synchronous operation of the processors, e.g., the Thinking Machines
CM-2. The processors may use shared memory, or each processor may have its
own local memory. Sequential programs require significant modification to make
effective nse of a SIMD architecture, and not all problems lend themselves to a
SIMD implementation.

MISD computers use N processors operating on a single data stream in
shared memory. Each processor executes its own instruction stream, such that
multiple operations are performed simultaneously on the same data item. MISD
architectures are relatively rare. Systolic arrays are the best known example.

MIMD is the most general and most popular class of parallel architectures.
A MIMD computer contains N processors, N instruction streams, and N data
streams. The processors are similar to those used in a SISD computer; each
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processor has its own control uiit, processing unit, and local memory.t MIMD
systems usually include shared memory or a communication network that con-
nects the processors to each other. The processors can work on separate, un-
related tasks, or they can cooperate to solve a single task, providing a great
deal of flexibility. MIMD systems with a high degree of processor interaction
are called tightly coupled, while systems with a low degree of processor interac-
tion are loosely coupled. Examples of MIMD systems include multiprocessor PC
servers, symmetric multiprocessors (SMPs) such as the Sun HPC Server, and
scalable parallel processors such as the IBM SP2.

Although MIMD typically refers to a single, self-contained parallel com-
puter using two or more of the same kind of processor, MIMD also characterizes
distributed computing architectures. In distributed computing, multiple comput-
ers connected by a local or wide area network cooperate to solve a single problem.
Even though the coupling between processors is very loose in a distributed com-
puting environment, the basic components of the MIMD architecture remain.
Each computer contains a processor, control unit, and local memory, and the
local or wide area network forms the communication network between the pro-
Cessors.

The main difference between a MIMD parallel computer and a distributed
computing environment is the cost of interprocessor communication, which is
considerably higher in a distributed computing environment. As such, dis-
tributed programs are usually coarse grained, while programs running on a single
parallel computer tend to be finer grained. Granularity refers to the amount of
computation relative to the amount of ccmmunication performed by the pro-
gram. Coarse-grained programs perform large amounts of computation relative
to communication; fine-grained programs perform large amounts of communica-
tion relative to computation. Of course, an application may use different levels
of granularity at different times to solve a given problem.

9.1.2 Performance Measures

When we employ parallel computing, we usually want to know what sort of per-
formance improvement we are obtaining over a comparable sequential program
running on a uniprocessor. A number of metrics are available to measure the
performance of a parallel algorithm. One such measure is the speedup obtained
with the parallel algorithm relative to the best available sequential algorithm for
solving the same problem, defined as:

Running time of best available sequential algorithm
S = - - -
Running time of parallel algorithm

t The processors used in a MIMD system may be identical to those used in SISD systems,
or they may provide additional functionality, such as hardware cache coherence for shared
memory.
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Ideally, when running a parallel algorithm on N processors, we would ob-
tain perfect speedup, or S = N. In practice, perfect speedup is unattainable
either because the problem cannot be decomposed into N equal subtasks, the
parallel architecture imposes contro! overheads (e.g., scheduling or synchroniza-
tion), or the problem contains an inherently sequential component. Amdahl’s
law [18] states that the maximal speedup obtainable for a given problem is re-
lated to f, the fraction of the problem that must be computed sequentially. The
relationship is given by:

< 1!
T f+QA-f)/NTf

Another measure of parallel algorithm performance is efficiency, given by:

S

°=¥
where S is speedup and N is the number of processors. Ideal efficiency occurs
when ¢ = 1 and no processor is ever idle or performs unnecessary work. As with
perfect speedup, ideal efficiency is unattainable in practice.

Ultimately, the performance improvement of a parallel program over a se-
quential program should be viewed in terms of the reduction in real time required
to complete the processing task combined with the additional monetary cost as-
sociated with the parallel hardware required to run the parallel program. This
gives the best overall picture of parallel program performance and cost effective-
ness.

9.2 Parallel IR
9.2.1 Introduction

We can approach the development of parallel information retrieval algorithms
from two different directions. One possibility is to develop new retrieval strate-
gies that directly lend themselves to parallel implementation. For example, a
text search procedure can be built on top of a neural network. Neural networks
{see Chapter 2) are modeled after the human brain and solve problems using a
large number of nodes (neurons), each of which has a set of inputs, a threshold,
and an output. The output of one node is connected to the input of one or more
other nodes, with the boundaries of the network defining the initial input and
final output of the system. A node’s output value is determined by a weighted
function of the node’s inputs and threshold. A training procedure is used to learn
appropriate settings for the weights and thresholds in the network. Computation
proceeds by applying input values to the network, computing each active node's
output value, and conditioning these values through the network until the final
output values are obtained. Neural networks naturally lend themselves to par-
allel implementation on SIMD hardware. The challenge with this approach is to
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define the retrieval task in such-a way that it maps well onto the computational
paradigm.

The other possibility is to adapt existing, well studied information retrieval
algorithms to parallel processing. This is the approach that we will consider
throughout the rest of this chapter. The modifications required to adapt an exist-
ing algorithm to parallel implementation depend on the target parallel platform.
We will investigate techniques for applying a number of retrieval algorithms to
both MIMD and SIMD architectures. Since parallel information retrieval is still
very much an active research area, few approaches have fallen out as accepted
standard techniques. We will, therefore, present a sampling of the work that has
been done and avoid preferring one technique over another.

9.2.2 MIMD Architectures

MIMD architectures offer a great deal of flexibility in how parallelism is defined
and exploited to solve a problem. The simplest way in which a retrieval system
can exploit a MIMD computer is through the use of multitasking. Each of the
processors in the parallel computer runs a separate, independent search engine.
The search engines do not cooperate to process individual queries, but they may
share code libraries and data cached by the file system or loaded into shared
memory. The submission of user queries to the search engines is managed by
a broker, which accepts search requests from the end users and distributes the
requests among the available search engines. This is depicted in Figure 9.1. As
more processors are added to the system, more search engines may be run and
more search requests may be processed in parallel, increasing the throughput of
the system. Note, however, that the response time of individual queries remains
unchanged.

In spite of the simplicity of this approach, care must be taken to properly
balance the hardware resources on the system. In particular, as the number of
processors grows, so must the number of disks and I/O channels. Unless the
entire retrieval index fits in main memory, the search processes running on the
different processors will perform I/O and compete for disk access. A bottleneck
at the disk will be disastrous for performance and could eliminate the throughput
gains anticipated from the addition of more processors.

In addition to adding more disks to the computer, the system adminis-
trator must properly distribute the index data over the disks. Disk contention
will remain as long as two search processes need to access index data stored on
the same disk. At one extreme, replicating the entire index on each disk elimi-
nates disk contention at the cost of increased storage requirements and update
complexity. Alternatively, the system administrator may partition and replicate
index data across the disks according to profile information; heavily accessed
data is replicated while less frequently accessed data is distributed randomly.
Yet another approach is to install a disk array, or RAID [165], and let the oper-
ating system handle partitioning the index. Disk arrays can provide low latency
and high throughput disk access by striping files across many disks.
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Figure 9.1 Parallel multitasking on a MIMD machine.

To move beyond multitasking and improve query response time, the com-
putation required to evaluate a single query must be partitioned into subtasks
and distributed among the multiple processors, as shown in Figure 9.2. In this
configuration the broker and search processes run in parallel on separate proces-
sors as before, but now they all cooperate to evaluate the same query. High level
processing in this system proceeds as follows. The broker accepts a query from
the end user and distributes it among the search processes. Each of the search
processes then evaluates a portion of the query and transmits an intermediate
result back to the broker. Finally, the broker combines the intermediate results
into a final result for presentation to the end user.

Since IR computation is typically characterized by a small amount of pro-
cessing per datum applied to a large amount of data, how to partition the com-
putation boils down to a question of how to partition the data. Figure 9.3
presents a high level view of the data processed by typical search algorithms
(see Chapter 8). Each row represents a document, d;, and each column rep-
resents an indexing item, k;. Here, k; may be a term, phrase, concept, or a
more abstract indexing item such as a dimension in an LSI vector or a bit in
a document signature. The entries in the matrix, w;, ;, are (possibly binary)
weights, indicating if and to what degree indexing item ¢ is assigned to docu-
ment j. The indexing item weights associated with a particular document form
a vector, dj = (wy,j,...,ws ;). During search, a query is also represented as a
vector of indexing item weights, ¢ = (wi,q,...,wsq), and the search algorithm
scores each document by applying a matching function F (d;, q) = sim(d;, q).

This high level data representation reveals two possible methods for par-
titioning the data. The first method, document partitioning, slices the data
matrix horizontally, dividing the documents among the subtasks. The N doc-
uments in the collection are distributed across the P processors in the system,
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Figure 9.2 Partitioned parallel processing on a MIMD machine.
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Figure 9.3 Basic data elements processed by a search algorithm.

creating P subcollections of approximately N/P documents each. During query
processing, each parallel process (one for each processor) evaluates the query on
the subcollection of N/P documents assigned to it, and the results from each
of the subcollections are combined into a final result list. The second method,
term partitioning, slices the data matrix vertically, dividing the indexing items
among the P processors such that the evaluation procedure for each document is
spread over multiple processors in the system. Below we consider both of these
partitioning schemes for each of the three main index structures.

Inverted Files

We first discuss inverted files for systems that employ document partitioning.
Following that, we cover systems that employ term partitioning. There are two
approaches to document partitioning in systems that use inverted files, namely,
logical document partitioning and physical document partitioning.
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Figure 9.4 Extended dictionary entry for document partitioning.

Logical Document Partitioning

In this case, the data partitioning is done logically using essentially the same
basic underlying inverted file index as in the original sequential algorithm (see
Chapter 8). The inverted file is extended to give each parallel process (one
for each processor) direct access to that portion of the index related to the
processor’s subcollection of documents. Each term dictionary entry is extended
to include P pointers into the corresponding inverted list, where the j-th pointer
indexes the block of document entries in the inverted list associated with the
subcollection in the j-th processor. This is shown in Figure 9.4, where the
dictionary entry for term ¢ contains four pointers into term ¢’s inverted list, one
for each parallel process (P = 4).

When a query is submitted to the system, the broker (from Figure 9.2) first
ensures that the necessary term dictionary and inverted file entries are loaded into
shared memory, where all of the parallel processes can access a single shared copy.
The broker then initiates P parallel processes to evaluate the query. Each process
executes the same document scoring algorithm on its document subcollection, us-
ing the extended dictionary to access the appropriate entries in the inverted file.
Since all of the index operations during query processing are read-only, there is
no lock contention among the processes for access to the shared term dictionary
and inverted file. The search processes record document scores in a single shared
array of document score accumulators and notify the broker when they have com-
pleted. Updates to the accumulator array do not produce lock contention either
since the subcollections scored by the different search processes are mutually ex-
clusive. After all of the search processes have finished, the broker sorts the array
of document score accumulators and produces the final ranked list of documents.
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At inverted file construction time, the indexing process for logically par-
titioned documents can exploit the parallel processors using a variant of the
indexing scheme described by Brown [123] (see Chapter 8). First, the indexer
partitions the documents among the processors. Next. it assigns document iden-
tifiers such that all identifiers in partition ¢ are less than all identifiers in partition
i + 1. The indexer then runs a separate indexing process on each processor in
parallel. Each indexing process generates a batch of inverted lists, sorted by
indexing item. After all of the batches have been generated, a merge step is per-
formed to create the final inverted file. Since the inverted lists in each batch are
sorted the same way, a binary heap-based priority queue is used to assemble the
inverted list components from each batch that correspond to the current indexing
item. The components are concatenated in partition number order to produce
a final inverted list and a dictionary entry for the indexing item is created that
includes the additional indexing pointers shown in Figure 9.4.

Physical Document Partitioning

In this second approach to document partitioning, the documents are physically
partitioned into separate, self-contained subcollections, one for each parallel pro-
cessor. Each subcollection has its own inverted file and the search processes share
nothing during query evaluation. When a query is submitted to the system, the
broker distributes the query to all of the parallel search processes. Each parallel
search process evaluates the query on its portion of the document collection, pro-
ducing a local, intermediate hit-list. The broker then collects the intermediate
hit-lists from all of the parallel search processes and merges them into a final
hit-list.

The P intermediate hit-lists can be merged efficiently using a binary heap-
based priority queue [188]. A priority queue of n elements has the property that
element i is greater than elements 2i and 2i + 1, where ¢ ranges from 1 to n. A
priority queue is not fully sorted, but the maximal element is always immediately
available (i.e., in ©(1) time) and can be extracted in O(logn) time. Inserting
an element into a priority queue can be done in O(log n) time as well. To merge
the intermediate hit-lists, a priority queue of P elements is created with the first
entry from each intermediate hit-list inserted into the queue in O(P log P) time.
To generate the final (and global) hit-list with the top k retrieved documents
(in a global ranking), k elements are extracted from the priority queue. As each
element is extracted from the priority queue, the intermediate hit-list from which
the element was originally drawn inserts a new element into the priority queue.
The P intermediate hit-lists can be merged into a final hit-list of k elements in
O((P + k) log P) time.

The merge procedure just described assumes that the parallel search pro-
cesses produce globally consistent document scores, i.e., document scores that
can be merged directly. Depending on the ranking algorithm in use, each paral-
lel search process may require global term statistics in order to produce globally
consistent document scores. There are two basic approaches to collect infor-
mation on global term statistics. The first approach is to compute global term
statistics at indexing time and store these statistics with each of the subcollec-
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tions. The second approach is for the query processing to proceed in two phases.
During the first phase, the broker collects subcollection term statistics from each
of the search processes and combines them into global term statistics. During
the second phase, the broker distributes the query and global term statistics to
the search processes and query evaluation proceeds as before. The first solu-
tion offers better query processing performance at the expense of more complex
indexing, while the second solution allows subcollections to be built and main-
tained independently at the expense of doubling communication costs during
query evaluation.

To build the inverted files for physically partitioned documents, each pro-
cessor creates, in parallel, its own complete index corresponding to its document
partition. If global collection statistics are stored in the separate term dictionar-
ies, then a merge step must be performed that accumulates the global statistics
for all of the partitions and distributes them to each of the partition dictionaries.

Logical document partitioning requires less communication than physical
document partitioning with similar parallelization, and so is likely to provide
better overall performance. Physical document partitioning, on the other hand,
offers more flexibility (e.g., document partitions may be searched individually)
and conversion of an existing IR system into a parallel IR system is simpler us-
ing physical document partitioning. For either document partitioning scheme,
threads provide a convenient programming paradigm for creating the search pro-
cesses, controlling their operation, and communicating between them. Threads
are natively supported in some modern programming languages (e.g., Java [491])
and well supported in a standard way in others (e.g., POSIX threads in C/C++).
Thread packages allow programmers to develop parallel programs using high level
abstractions of concurrent execution, communication, and synchronization. The
compiler and runtime system then map these abstractions to efficient operating
system services and shared memory operations.

Term Partitioning

When term partitioning is used with an inverted file-based system, a single in-
verted file is created for the document collection (using the parallel construction
technique described above for logical document partitioning) and the inverted
lists are spread across the processors. During query evaluation, the query is de-
composed into indexing items and each indexing item is sent to the processor that
holds the corresponding inverted list. The processors create hit-lists with par-
tial document scores and return them to the broker. The broker then combines
the hit-lists according to the semantics of the query. For Boolean queries, the
hit-lists are unioned, intersected, or subtracted as appropriate. For ranked free
text queries, the hit-lists contain term scores that must be combined according
to the semantics of the ranking formula.

In comparison, document partitioning affords simpler inverted index con-
struction and maintenance than term partitioning. Their relative performance
during query processing was shown by Jeong and Omiecinski [404] to depend on
term distributions. Assuming each processor has its own I/O channel and disks,
when term distributions in the documents and the queries are more skewed,
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document partitioning performs better. When terms are uniformly distributed
in user queries, term partitioning performs better. For instance, using TREC
data, Ribeiro-Neto and Barbosa [673, 57] have shown that term partitioning
might be twice as fast with long queries and 5-10 times faster with very short
(Web-like) queries.

Suffix Arrays

We can apply document partitioning to suffix arrays in a straightforward fash-
ion. As with physical document partitioning for inverted files, the document
collection is divided among the P processors and each partition is treated as
an independent, self-contained collection. The system can then apply the suffix
array construction techniques described in Chapter 8 to each of the partitions,
with the enhancement that all of the partitions are indexed concurrently. During
search, the broker broadcasts the query to all of the search processes, collects
the intermediate results, and merges the intermediate results into a final hit-list.

If all of the documents will be kept in a single collection, we can still exploit
the parallel processors to reduce indexing time. An interesting property of the
suffix array construction algorithm for large texts (described in Chapter 8) is
that each of the merges of partial indices is independent. Therefore all of the
O((n/M)?) merges may be run in parallel on separate processors. After all
merges are complete, the counters for each partial index must be accumulated
and the final index merge may be performed.

Term partitioning for a suffix array amounts to distributing a single suffix
array over multiple processors such that each processor is responsible for a lexi-
cographical interval of the array. During query processing, the broker distributes
the query to the processors that contain the relevant portions of the suffix array
and merges the results. Note that when searching the suffix array, all of the
processors require access to the entire text. On a single parallel computer with
shared memory (e.g., an SMP system), this is not a problem since the text may
be cached in shared memory. This may be a problem, however, if shared memory
is not available and communication costs are high, as is the case in a distributed
system (e.g., a network of workstations).

Signature Files

To implement document partitioning in a system that uses signature files, the
documents are divided among the processors as before and each processor gener-
ates signatures for its document partition. At query time, the broker generates
a signature for the query and distributes it to all of the parallel processors. Each
processor evaluates the query signature locally as if its document partition was
a separate, self-contained collection. Then the results are sent to the broker,
which combines them into a final hit-list for the user. For Boolean queries, the
final result is simply a union of the results returned from each processor. For
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ranked queries, the ranked hit-lists are merged as described above for inverted
file implementations.

To apply term partitioning in a signature file-based system, we would have
to use a bit-sliced signature file [627] and partition the bit slices across the proces-
sors. The amount of sequential work required to merge the intermediate results
from each of the processors and eliminate false drops, however, severely limits
the speedup S available with this organization. Accordingly, this organization is
not recommended.

9.2.3 SIMD Architectures

SIMD architectures lend themselves to a more restricted domain of problems
than MIMD architectures. As such, SIMD computers are less common than
MIMD computers. Perhaps the best known example of the SIMD architecture
is the Thinking Machines CM-2, which has been used to support both signature
file- and inverted file-based information retrieval algorithms. Each processing
element in the CM-2 has a 1 bit arithmetic logic unit (ALU) and a small amount
of local memory. The processing elements execute local and non-local parallel
instructions. A local parallel instruction causes each processing element to per-
form the same operation in unison on data stored in the element’s local memory.
A non-local parallel instruction involves communication between the processing
elements and includes operations such as summing the components of a vector
or finding a global maximum.

The CM-2 uses a separate front-end host computer to provide an interface
to the back-end parallel processing elements. The front-end controls the loading
and unloading of data in the back-end and executes serial program instructions,
such as condition and iteration statements. Parallel macro instructions are sent
from the front-end to a back-end microcontroller, which controls the simultane-
ous execution of the instruction on a set of back-end processing elements.

The CM-2 provides a layer of abstraction over the back-end processors,
called virtual processors. One or more virtual processors map to a single physical
processor. Programs express their processing needs in terms of virtual Pprocessors,
and the hardware maps virtual processor operations onto physical processors. A
physical processor must sequentially perform the operations for each of its virtual
processors. The ratio of virtual to physical processors is called the virtual pro-
cessing ratio, VP. As VP increases, an approximately linear increase in running
time occurs.

Signature Files

The most natural application of a SIMD computer in IR is to support signature
files. Recall from Chapter 8 the basic search process for signature files. First,
the search system constructs a signature for the query terms. Next, the system
compares the query signature with the signature of every document in the col-
lection and marks documents with matching signatures as potentially relevant.
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probe_doc (P_bit Doc_sig[], char *term)
{

int i;

P_int Doc_match;

Doc_match = 1;

for (i = 0; i < num_hashes; i++) {
Doc_match &= Doc_sig{hash (i, term)];

}

return Doc_match;

Figure 9.5 probe_doc.

Finally, the system scans the full text of potentially relevant documents to elim-
inate false drops, ranks the matching documents, and returns the hit-list to the
user. If the probability of false drops is acceptably low, the full text scan may
be eliminated. Also, if the system is processing Boolean queries, it may need to
generate more than one signature for the query and combine the intermediate
results of each signature according to the operators used in the query.

Stanfill [741] shows how this procedure can be adapted to the CM-2 (or any
similar SIMD machine). The core of the procedure is the subroutine shown in
Figure 9.5.1 This routine probes the document signature Doc_sig for the given
query word term by applying each of the signature hash functions to term and
ANDing together the corresponding bits in Doc_sig. The result of the AND
operation is stored in Doc_match. If Doc_match is 1, term is present in Doc.sig;
if Doc_match is O, term is absent. Both Doc_sig and Doc_match are parallel
variables, such that each virtual processor operates in parallel on its own copy
of the variables. By loading the entire signature file onto the back-end virtual
processors, all of the document signatures can be searched in parallel.

This procedure must be enhanced under the following condition. If the
number of words in a document |d| exceeds the number of words W that can
be inserted into a document signature, then the document must be segmented
into |d|/W segments and represented by |d|/W signatures. In this case, the
probe_doc routine is applied to all signatures for a document and an OR is taken
over the individual signature results to obtain the final result for the document.
If the false drop probability warrants scanning the full text of the documents,
only those segments with matching signatures need be scanned. As soon as a
qualifying segment is found, the entire document is marked as a match for the

query.

t The algorithms shown in this chapter are presented using a C-like pseudo-code. Parallel
data type names begin with a capital ‘P’.
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bool_search (P_bit Doc_sig[], bquery_t query)
{
switch (query.op) {
case AND:
return (bool_search (Doc_sig, query.argl)
&k bool_search (Doc_sig, query.arg2));
case OR:
return (bool_search (Doc_sig, query.argl)
|1 bool_search (Doc_sig, query.arg2));
case NOT:
return (!bool_search (Doc_sig, query.argl));
case WORD:
return (probe_doc (Doc_sig, query.argl));

Figure 9.6 bool_search.

A general Boolean retrieval system can be implemented on top of probe_doc
with the recursive procedure shown in Figure 9.6. Here bquery_t is a recursive
data type that contains two arguments and an operator. If the operator is
NOT or WORD, then the second argument in the bquery_t is empty. The final
return value is stored in a parallel Boolean variable, which indicates for each
document whether or not that document satisfies the Boolean query. Again, if
the probability of false drops associated with the signature scheme is acceptably
low, the set of matching documents may be returned immediately. Otherwise, the
system must perform further processing on the text of each matching document
to eliminate false drops.

If weights are available for the query terms, it is possible to build a ranking
retrieval system on top of the parallel signature file search process. Query term
weights could be supplied by the end-user when the query is created, or they
could be assigned by the system using a collection statistic such as idf (see
Chapter 2). The algorithm in Figure 9.7 shows how to use probe_doc to build a
ranking system.

In rank_search, the wquery_t data type contains an array of query terms
and an array of weights associated with those terms. First, all documents that
contain the current term are identified with probe_doc. Next, the score for each
of those documents is updated by adding the weight associated with the current
query term (the where clause tests a parallel variable expression and activates
only those processors that satisfy the expression). After all query terms have
been processed, the parallel variable Doc_score contains the rank scores for all
of the documents.

The final step in the processing of a weighted query is to rank the scored
documents by sorting and returning the top k hits. This can be accomplished in
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rank_search (P_bit Doc_sigl[], wquery_t query)
{

int i;

P_float Doc_score;

P_bool Doc_match;

Doc_score = 0;
for (i = 0; i < query.num_terms; i++) {
Doc_match = probe_doc (Doc_sig, query.terms[i]);
where (Doc_match) {
Doc_score += query.weights[i];
¥
}

return (Doc_score);

Figure 9.7 rank_search.

a number of ways. One possibility is to use the global ranking routine provided
by the CM-2, which takes a parallel variable and returns 0 for the largest value,
1 for the next largest value, etc. Applying this routine to Doc_score yields the
ranked documents directly. If the number of hits returned is much less than the
number of documents in the collection (k << N), the global ranking function
performs more work than necessary. An alternative is for the retrieval system
to use the global maximum routine in an iterative process of identification and
extraction. During each iteration, the system applies the global maximum rou-
tine to Doc_score to identify the current top ranked document. The document
is added to the hit-list and its score in Doc_score is set to —1. After k iterations,
the top k hits will have been entered on the hit-list.

The techniques just described assume that the entire signature file fits in
main memory. If this is not the case, additional steps must be taken to process
the entire document collection. A straightforward approach is to process the
collection in batches. A batch consists of as many document signatures as will
fit in main memory at one time. Each batch is read into memory and scored
using one of the above algorithms. The intermediate results are saved in an
array of document scores. After all batches have been processed, the array of
document scores is ranked and the final hit-list is generated.

In general, processing the collection in batches performs poorly due to the
I/0 required to read in each batch. The performance penalty imposed by the
I/O can be reduced by processing multiple queries on each batch, such that
the I/O costs are amortized over multiple queries. This helps query processing
throughput, but does nothing to improve query processing response time.

An alternative to processing in batches is to use a parallel bit-sliced sig-
nature file, proposed by Panagopoulos and Faloutsos [627] (see Chapter 8).
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doc; |0 1 1 0 1 1
docgc {1 0 0 1 0 O
docg |1 1 1 0 1 0
doc4 |0 1 0 0 O O
docs |1 1 0 0 0 1

Figure 9.8 Document signatures.

Figure 9.8 shows a matrix representation of the signatures for a small docu-
ment collection (N = 5). In a traditional signature file, each row of the matrix,
or document signature, is stored contiguously. In a bit-sliced signature file, each
column of the matrix, or bit-slice, is stored contiguously. A bit-slice is a vertical
slice through the matrix, such that bit-slice i contains the i-th bit from every
document signature. With this organization, the retrieval system can load just
those bit-slices required by the query terms in question. Note that the file offset
of bit-slice 7 (starting with 0) is ix N bits, and the length of each bit-slice is N bits.

When using a bit-sliced signature file, each virtual processor is still respon-
sible for scoring a single document. A virtual processor’s local memory is used
to store the bits from each bit-slice that correspond to the processor’s document.
A bit-slice, therefore, is distributed across the virtual processors with one bit at
each processor. The set of bits across the virtual processors that corresponds to a
single bit-slice is called a frame. The total number of frames is F' = M /N, where
M is the size of memory in bits available for storing bit-slices. When F' < W (W
is the number of bit-slices in the file), the system employs a frame replacement
policy to determine which bit-slices must be resident to process the query. The
frame replacement policy may simply fetch all of the bit-slices that correspond
to the query terms, or it may analyze the query and identify a subset of bit-slices
that, when evaluated, still provides an acceptably low false drop probability.

To search the bit-sliced signature file, we must make a few modifications
to our basic query processing procedures. First, the frame replacement routine
must be run at the start of processing a query to insure that the required bit-
slices are resident. Second, the signature hash functions must be updated to -
return a frame index rather than a signature bit index. The frame index is the
index of the frame that contains the bit-slice corresponding to the previously
computed signature bit index. Finally, the parallel bit array, Doc_sig, passed
into probe_doc is replaced with the parallel bit array Frames, which provides
each virtual processor access to its frames.

Panagopoulos and Faloutsos [627] analyze the performance of the parallel
bit-sliced signature file and show that query response times of under 2 seconds
can be achieved on a 128 Gb database on the CM-2. Although this technique ad-
dresses the issue of query response time on large document collections, it defeats
one of the often claimed advantages of the signature file organization, namely,
that indexing new documents is straightforward. In a traditional signature file
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organization, new document signatures may simply be appended to the signature
file. With a bit-sliced signature file, the signature file must be inverted, resulting
in update costs similar to that of an inverted file.

Inverted Files

While the adaptation of signature file techniques to SIMD architectures is rather
natural, inverted files are somewhat awkward to implement on SIMD machines.
Nevertheless, Stanfill et al. [744, 740] have proposed two adaptations of inverted
files for the CM-2. Recall from Chapter 8 the structure of an inverted list. In
its simplest form, an inverted list contains a posting for each document in which
the associated term appears. A posting is a tuple of the form (k;,d;), where k;
is a term identifier and d; is a document identifier. Depending on the retrieval
model, postings may additionally contain weights or positional information. If
positional information is stored, then a posting is created for each occurrence of
ki in dj.

The first parallel inverted file implementation for the CM-2 uses two data
structures to store the inverted file: a postings table and an index. The postings
table contains the document identifiers from the postings and the index maps
terms to their corresponding entries in the postings table. Before the postings are
loaded into these structures, they are sorted by term identifier. The document
identifiers are then loaded into the postings table in this sorted order, filling in
a series of rows of length P, where P is the number of processors in use. The
postings table is treated as a parallel array, where the array subscript selects a
particular row, and each row is spread across the P processors. For each term,
the index stores the locations of the first and last entries in the postings table
for the set of document identifiers associated with the term. Figure 9.9 shows
a small document collection, the raw postings, and the resulting postings table
and index. For example, to find the documents that contain the term ‘piggy,’
we look up ‘piggy’ in the index and determine that the postings table entries
from row 1, position 3, to row 2, position 1, contain the corresponding document
identifiers, or 0, 1, and 2.

At search time these data structures are used to rank documents as follows.
First, the retrieval system loads the postings table onto the back-end processors.
Next, the system iterates over the query terms. For each query term, an index
lookup returns the range of postings table entries that must be processed. The
search system then iterates over the rows included in this range. For each row,
the processors that contain entries for the current term are activated and the as-
sociated document identifiers are used to update the scores of the corresponding
documents.

Document scores are built up in accumulators (called mailbozes by Stanfill),
which are allocated in a parallel array similar to the postings table. To update the
accumulator for a particular document, we must determine the accumulator’s row
and position within the row. For convenience, we’ll assume that this information
(rather than document identifiers) is stored in the postings table. Furthermore,
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Documents

This little piggy | This little piggy | This little piggy

went to market. stayed home. had roast beef.
Postings
beef 2
had 2 Index
home 1 First Last
little 0 Term Row | Pos. | Row | Pos.
little 1 beef 0 0 0 0
little 2 had 0 1 0 1 Postings Table
market O home 0 2 0 2 2 2 1 0
piggy 0 little 0 3 1 1 1 2 0 0
piggy 1 market 1 2 1 2 1 2 2 1
piggy 2 piggy 1 3 2 1 0 1 2 0
roast 2 roast 2 2 2 2 0
stayed 1 stayed 2 3 2 3
this 0 this 3 0 3 2
this 1 to 3 3 3 3
this 2 went 4 0 4 0
to 0
went 0

Figure 9.9 Parallel inverted file.

we’ll assume that weights have been associated with each posting and stored in
the postings table. The complete algorithm for scoring a weighted term is shown
in Figure 9.10.

The score_term routine assumes that the index lookup for the query term
has been done and the results were stored in term. The routine iterates over
each row of postings associated with the term and determines which positions
to process within the current row. Position is a parallel integer constant where
the first instance contains 0, the second instance contains 1, etc., and the last
instance contains N_PROCS — 1. It is used in the where clause to activate the
appropriate processors based on the positions of interest in the current row. The
left-indexing performed on Doc_score at the end of the routine provides access
to a particular instance of the parallel variable. This operation is significant
because it involves communication between the processors. Posting weights must
be shipped from the processor containing the posting to the processor containing
the accumulator for the corresponding document. After the system has processed
all of the query terms with score_term, it ranks the documents based on their
scores and returns the top & documents.

It is expensive to send posting weights to accumulators on different pro-
cessors. To address this problem, Stanfill 740} proposed the partitioned postings
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score_term (P_float Doc_score(], P_posting Posting[],
term_t term)

{
int i;
int first_pos;
int last_pos;

P_int Doc_row;
P_int Doc_pos;
P_float Weight;

for (i = term.first_row; i <= term.last_row; i++) {
first_pos = (i == term.first_row ?
term.first_pos : 0);
last_pos = (i == term.last_row ?
term.last_pos : N_PROCS - 1);
where (Position >= first_pos
&& Position <= last_pos) {
Doc_row = Posting[i] .row;
Doc_pos = Posting(i].pos;
Weight = term.weight * Posting[i].weight;
[Doc_pos]Doc_score [Doc_row] += Weight;

Figure 9.10 score_term.

file, which eliminates the communication required in the previous algorithm by
storing the postings and accumulator for a given document on the same proces-
sor. There are two tricks to accomplishing this. First, as the postings are loaded
into the postings table, rather than working left to right across the rows and
filling each row before starting with the next one, the postings are added to the
column that corresponds to the processor where the associated document will be
scored. This ensures that all of the postings associated with a document will be
loaded onto the same processor as the document’s accumulator. Figure 9.11(a)
shows how the postings from Figure 9.9 would be loaded into a table for two
processors, with documents 0 and 1 assigned to processor 0 and document 2
assigned to processor 1.

Figure 9.11(a) also demonstrates a problem with this scheme. The postings
for the term this are skewed and no longer span consecutive rows. To handle this
situation, we apply the second trick of the partitioned postings file, which is to
segment the postings such that every term in segment ¢ is lexicographically less
than or equal to every term in segment i + 1. This is shown in Figure 9.11(b)
using segments of three rows. Note how some segments may need to be padded
with blank space in order to satisfy the partitioning constraints.
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home 1 | beef 2 home 1| beef 2
little 0 | had 2 little 0 | had 2
little 1 | little 2 little 1 | little 2
market 0 | piggy 2 market O | piggy 2
piggy O | roast 2 piggy 0 | roast 2
piggy 1 | this 2 piggy 1
stayed 1 stayed 1 | this 2
this 0 this 0
this 1 this 1
to 0 to 0
went 0 went 0

(a) (b)

Figure 9.11 Skewed and partitioned postings.
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Figure 9.12 Partitioned postings file.

The postings table and index undergo a few more modifications before
reaching their final form, shown in Figure 9.12. First, term identifiers in the
postings are replaced by term tags. The system assigns tags to terms such
that no two terms in the same partition share the same tag. Second, document
identifiers in the postings are replaced by document row numbers, where the
row number identifies which row contains the accumulator for the document.
Since the accumulator is at the same position (i.e., processor) as the posting,
the row number is sufficient to identify the document. Finally, the index is
modified to record the starting partition, ending partition, and tag for each term.
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ppf_score_term (P_float Doc_score[]l, P_posting Postingl]l,
term_t term)
{
int i;
P_int Doc_row;
P_float Weight;

for (i = term.first_part * N_ROWS;
i < (term.last_part + 1) * N_ROWS; i++) {
vhere (Posting[il).tag == term.tag) {
Doc_row = Posting[i] .row;
Weight = term.weight * Posting[i].weight;
Doc_score[Doc_row] += Weight;
}
}
}

Figure 9.13 ppf_score_term.

The modified term scoring algorithm is shown in Figure 9.13.

Here N_ROWS is the number of rows per partition. The algorithm iterates
over the rows of postings that span the term’s partitions and activates the proces-
sors with matching postings. Each active processor extracts the document row
from the posting, calculates the term weight, and updates the document’s score.
After all query terms have been processed, the system ranks the documents and
returns the top k. Stanfill [740] shows that the partitioned postings file imposes
a space overhead of approximately 1/3 the original text (of which 10-20% is
wasted partition padding) and can support sub 2-second query response times
on a terabyte of text using a 64K processor CM-2.

9.3 Distributed IR
9.3.1 Introduction

Distributed computing is the application of multiple computers connected by
a network to solve a single problem. A distributed computing system can be
viewed as a MIMD parallel processor with a relatively slow inter-processor com-
munication channel and the freedom to employ a heterogeneous collection of
processors in the system. In fact, a single processing node in the distributed sys-
tem could be a parallel computer in its own right. Moreover, if they all support
the same public interface and protocol for invoking their services, the computers
in the system may be owned and operated by different parties.

Distributed systems typically consist of a set of server processes, each run-
ning on a separate processing node, and a designated broker process responsible
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for accepting client requests, distributing the requests to the servers, collecting
intermediate results from the servers, and combining the intermediate results
into a final result for the client. This computation model is very similar to
the MIMD parallel processing model shown in Figure 9.2. The main difference
here is that the subtasks run on different computers and the communication be-
tween the subtasks is performed using a network protocol such as TCP/IP [176]
(rather than, for example, shared memory-based inter-process communication
mechanisms). Another significant difference is that in a distributed system it
is more common to employ a procedure for selecting a subset of the distributed
servers for processing a particular request rather than broadcasting every request
to every server in the system.

Applications that lend themselves well to a distributed implementation
usually involve computation and data that can be split into coarse-grained op-
erations with relatively little communication required between the operations.
Parallel information retrieval based on document partitioning fits this profile
well. In section 9.2.2 we saw how document partitioning can be used to di-
vide the search task up into multiple, self-contained subtasks that each involve
extensive computation and data processing with little communication between
them. Moreover, documents are almost always grouped into collections, either
for administrative purposes or to combine related documents into a single source.
Collections, therefore, provide a natural granularity for distributing data across
servers and partitioning the computation. Note that since term partitioning
imposes greater communication overhead during query processing, it is rarely
employed in a distributed system.

To build a distributed IR system, we need to consider both engineering
issues common to many distributed systems and algorithmic issues specific to
information retrieval. The critical engineering issues involve defining a search
protocol for transmitting requests and results; designing a server that can effi-
ciently accept a request, initiate a subprocess or thread to service the request, and
exploit any locality inherent in the processing using appropriate caching tech-
niques; and designing a broker that can submit asynchronous search requests
to multiple servers in parallel and combine the intermediate results into a final
end user response. The algorithmic issues include how to distribute documents
across the distributed search servers, how to select which servers should receive
a particular search request, and how to combine the results from the different
servers.

The search protocol specifies the syntax and semantics of messages trans-
mitted between clients and servers, the sequence of messages required to estab-
lish a connection and carry out a search operation, and the underlying transport
mechanism for sending messages (e.g., TCP/IP). At a minimum, the protocol
should allow a client to:

e obtain information about a search server, e.g., a list of databases avail-
able for searching at the server and possibly statistics associated with the
databases;
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e submit a search request for one or more databases using a well defined
query language;

e receive search results in a well defined format;

e retrieve items identified in the search results.

For closed systems consisting of homogeneous search servers, a custom
search protocol may be most appropriate, particularly if special functionality
(e.g., encryption of requests and results) is required. Alternatively, a standard
protocol may be used, allowing the system to interoperate more easily with other
search servers. The Z39.50 [606] standard (see Chapter 4) for client/server in-
formation retrieval defines a widely used protocol with enough functionality to
support most search applications. Another proposed protocol for distributed,
heterogeneous search, called STARTS (Stanford Proposal for Internet Meta-
Searching) [317], was developed at Stanford University in cooperation with a
consortium of search product and service vendors. STARTS was designed from
scratch to support distributed information retrieval and includes features in-
tended to solve the algorithmic issues related to distributed IR, such as merging
results from heterogeneous sources.

The other engineering issues related to building efficient client/server sys-
tems have been covered extensively in the literature (see, for example, Comer
and Stevens [176] and Zomaya [852]). Rather than review them here, we con-
tinue with a more detailed look at the algorithmic issues involved in distributed
IR.

9.3.2 Collection Partitioning

The procedure used to assign documents to search servers in a distributed IR
system depends on a number of factors. First, we must consider whether or not
the system is centrally administered. In a system comprising independently ad-
ministered, heterogeneous search servers, the distributed document collections
will be built and maintained independently. In this case, there is no central
control of the document partitioning procedure and the question of how to par-
tition the documents is essentially moot. It may be the case, however, that each
independent search server is focused on a particular subject area, resulting in a
semantic partitioning of the documents into distributed collections focused on
particular subject areas. This situation is common in meta search systems that
provide centralized access to a variety of back-end search service providers.

When the distributed system is centrally administered, more options are
available. The first option is simple replication of the collection across all of the
search servers. This is appropriate when the collection is small enough to fit
on a single search server, but high availability and query processing throughput
are required. In this scenario, the parallelism in the system is being exploited
via multitasking (see Figure 9.1) and the broker’s job is to route queries to the
search servers and balance the loads on the servers.
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Indexing the documents is handled in one of two ways. In the first method,
each search server separately indexes its replica of the documents. In the second
method, each server is assigned a mutually exclusive subset of documents to
index and the index subsets are replicated across the search servers. A merge of
the subsets is required at each search server to create the final indexes (which can
be accomplished using the technique described under Document Partitioning in
section 9.2.2). In either case, document updates and deletions must be broadcast
to all servers in the system. Document additions may be broadcast, or they
may be batched and partitioned depending on their frequency and how quickly
updates must be reflected by the system.

The second option is random distribution of the documents. This is ap-
propriate when a large document collection must be distributed for performance
reasons but the documents will always be viewed and searched as if they are
part of a single, logical collection. The broker broadcasts every query to all of
the search servers and combines the results for the user.

The final option is explicit semantic partitioning of the documents. Here
the documents are either already organized into semantically meaningful collec-
tions, such as by technical discipline, or an automatic clustering or categorization
procedure is used to partition the documents into subject specific collections.

9.3.3 Source Selection

Source selection is the process of determining which of the distributed document
collections are most likely to contain relevant documents for the current query,
and therefore should receive the query for processing. One approach is to always
assume that every collection is equally likely to contain relevant documents and
simply broadcast the query to all collections. This approach is appropriate when
documents are randomly partitioned or there is significant semantic overlap be-
tween the collections.

When document collections are partitioned into semantically meaningful
collections or it is prohibitively expensive to search every collection every time,
the collections can be ranked according to their likelihood of containing relevant
documents. The basic technique is to treat each collection as if it were a single
large document, index the collections, and evaluate the query against the collec-
tions to produce a ranked listing of collections. We can apply a standard cosine
similarity measure using a query vector and collection vectors. To calculate a
term weight in the collection vector using tf-idf style weighting (see Chapter 2),
term frequency tf; ; is the total number of occurrences of term i in collection 7
and the inverse document frequency idf; for term i is log(N/n;), where N is the
total number of collections and n; is the number of collections in which term i
appears.

A danger of this approach is that although a particular collection may re-
ceive a high query relevance score, there may not be individual documents within
the collection that receive a high query relevance score, essentially resulting in a
false drop and unnecessary work to score the collection. Moffat and Zobel [574]
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propose avoiding this problem by indexing each collection as a series of blocks,
where each block contains B documents. When B equals 1, this is equivalent to
indexing all of the documents as a single, monolithic collection. When B equals
the number of documents in each collection, this is equivalent to the original
solution. By varying B, a tradeoff is made between collection index size and
likelihood of false drops.

An alternative to searching a collection index was proposed by Voorhees
[792], who proposes using training queries to build a content model for the dis-
tributed collections. When a new query is submitted to the system, its similarity
to the training queries is computed and the content model is used to determine
which collections should be searched and how many hits from each collection
should be returned.

9.3.4 Query Processing

Query processing in a distributed IR system proceeds as follows:

(1) Select collections to search.
(2) Distribute query to selected collections.
(3) Evaluate query at distributed collections in parallel.

(4) Combine results from distributed collections into final result.

As described in the previous section, Step 1 may be eliminated if the query
is always broadcast to every document collection in the system. Otherwise,
one of the previously described selection algorithms is used and the query is
distributed to the selected collections. Each of the participating search servers
then evaluates the query on the selected collections using its own local search
algorithm. Finally, the results are merged.

At this point we have covered everything except how to merge the results.
There are a number of scenarios. First, if the query is Boolean and the search
servers return Boolean result sets, all of the sets are simply unioned to create the
final result set. If the query involves free-text ranking, a number of techniques
are available ranging from simple/naive to complex/accurate.

The simplest approach is to combine the ranked hit-lists using round robin
interleaving. This is likely to produce poor quality results since hits from ir-
relevant collections are given status equal to that of hits from highly relevant
collections. An improvement on this process is to merge the hit-lists based on
relevance score. As with the parallel process described for Document Partition-
ing in section 9.2.2, unless proper global term statistics are used to compute
the document scores, we may get incorrect results. If documents are randomly
distributed such that global term statistics are consistent across all of the dis-
tributed collections, the merging based on relevance score is sufficient to main-
tain retrieval effectiveness. If, however, the distributed document collections are
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semantically partitioned or maintained by independent parties, then reranking
must be performed.

Callan [139] proposes reranking documents by weighting document scores
based on their collection similarity computed during the source selection step.
The weight for a collection is computed as w = 14 | C | -(s — 3)/5, where | C | is
the number of collections searched, s is the collection’s score, and 3 is the mean
of the collection scores.

The most accurate technique for merging ranked hit-lists is to use accurate
global term statistics. This can be accomplished in one of a variety of ways.
First, if the collections have been indexed for source selection, that index will
contain global term statistics across all of the distributed collections. The bro-
ker can include these statistics in the query when it distributes the query to
the remote search servers. The servers can then account for these statistics in
their processing and produce relevance scores that can be merged directly. If a
collection index is unavailable, query distribution can proceed in two rounds of
communication. In the first round, the broker distributes the query and gathers
collection statistics from each of the search servers. These statistics are combined
by the broker and distributed back to the search servers in the second round.

Finally, the search protocol can require that search servers return global
query term statistics and per-document query term statistics [317, 441). The
broker is then free to rerank every document using the query term statistics
and a ranking algorithm of its choice. The end result is a hit-list that contains
documents from the distributed collections ranked in the same order as if all of
the documents had been indexed in a single collection.

9.3.5 Web Issues

Information retrieval on the World Wide Web is covered extensively in Chap-
ter 13. For completeness, we briefly mention here how parallel and distributed
information retrieval applies to the Web. The most direct application is to gather
all of the documents on the Web into a single, large document collection. The
parallel and distributed techniques described above can then be used directly
as if the Web were any other large document collection. This is the approach
currently taken by most of the popular Web search services.

Alternatively, we can exploit the distributed system of computers that make
up the Web and spread the work of collecting, crganizing, and searching all of
the documents. This is the approach taken by the Harvest system [108]. Harvest
comprises a number of components for gathering, summarizing, replicating, dis-
tributing, and searching documents. User queries are processed by brokers, which
collect and refine information from gatherers and other brokers. The information
at a particular broker is typically related to a restricted set of topics, allowing
users to direct their queries to the most appropriate brokers. A central broker
registry helps users find the best brokers for their queries (see Figure 13.4).
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9.4 Trends and Research Issues

Parallel computing holds great potential for tackling the performance and scale
issues associated with the large and growing document collections currently avail-
able online. In this chapter we have surveyed a number of techniques for exploit-
ing modern parallel architectures. The trend in parallel hardware is the develop-
ment of general MIMD machines. Coincident with this trend is the availability of
features in modern programming languages, such as threads and associated syn-
chronization constructs, that greatly facilitate the task of developing programs
for these architectures. In spite of this trend, research in parallel IR algorithms
on MIMD machines is relatively young, with few standard results to draw on.

Much of the early work in parallel IR was aimed at supporting signature
files on SIMD architectures. Although SIMD machines are well suited to pro-
cessing signature files, both SIMD machines and signature files have fallen out of
favor in their respective communities. SIMD machines are difficult to program
and are well suited to a relatively small class of problems. As Chapter 8 points
out, signature files provide poor support for document ranking and hold few,
if any, advantages over inverted files in terms of functionality, index size, and
processing speed [851].

Distributed computing can be viewed as a foru of MIMD computing with
relatively high interprocessor communication costs. Most of the parallel IR al-
gorithms discussed in this chapter, however, have a high ratio of computation
to communication, and are well suited to both symmetric multiprocessor and
distributed implementations. In fact, by using an appropriate abstraction layer
for inter-process communication, we can easily implement a parallel system that
works well on both multiprocessor and distributed architectures with relatively
little modification.

Many challenges remain in the area of parallel and distributed text retrieval.
While we have presented a number of approaches in this chapter, none stand out
as the definitive solution for building parallel or distributed information retrieval
systems. In addition to the continued development and investigation of parallel
indexing and search techniques for systems based on inverted files and suffix
arrays, two specific challenges stand out.

The first challenge is measuring retrieval effectiveness on large text collec-
tions. Although we can easily measure the speedup achieved by a given parallel
system, measuring the quality of the results produced by that system is another
story. This challenge, of courde, is not unique to parallel IR systems. Large
collections pose problems particularly when it comes to generating relevance
judgments for queries. The pooling techniques used in TREC (see Chapter 3)
may not work. There, ranked result lists are combined from multiple systems
to produce a relatively small set of documents for human evaluation. The as-
sumption is that most, if not all, of the relevant documents will be included in
the pool. With large collections, this assumption may not hold. Moreover, it is
unclear how important recall is in this context.

The second significant challenge is interoperability, or building distributed
IR systems from heterogeneous components. The need for distributed systems
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comprising heterogeneous back-end search servers is clear from the popularity of
meta search services on the Web. The functionality of these systems is limited,
however, due to the lack of term statistics from the back-end search servers, which
would otherwise allow for accurate reranking and result list merging. Moreover,
each search server employs its own, custom query language, opening up the
possibility that the original intent of the query is lost when it is translated to
the back-end query languages. Protocol standardization efforts, such as STARTS
[317], attempt to address these problems, but commitment to these standards
by the entire community of search providers is required.

9.5 Bibliographic Discussion

A thorough overview of parallel and distributed computing can be found in the
Parallel and Distributed Computing Handbook [852], edited by Albert Zomaya.
Many interesting research papers specific to parallel and distributed information
systems can be found in the proceedings of the IEEE International Conference
on Parallel and Distributed Information Systems.

Stanfill et al. [742, 744, 740] are responsible for much of the early work using
massively parallel hardware (in particular, the Thinking Machines Connection
Machine) to solve IR problems. Pogue and Willet [645] also explored massively
parallel IR using the ICL Distributed Array Processor. Salton and Buckley {701]
provide some interesting comments on the early 1mplementat10ns of parallel IR,
challenging both their speed and effectiveness.

Lu et al. [524] analyze how to properly scale SMP hardware for parallel
IR and emphasize the importance of proper hardware balance. Investigations
into parallel and distributed inverted file implementations have been performed
by Tomasic and Garcia-Molina [762, 763, 764], Jeong and Omiecinski [404], and
Ribeiro-Neto and Barbosa [673]. Parallel and distributed algorithms for suffix
array construction and search have been explored by Navarro et al. [591]. Given
P processors and total text of size n, they obtain average indexing times that
are O(n/P logn) CPU time and O(n/P) communication time.

Macleod et al. [535] offer a number of strategies and tips for building
distributed information retrieval systems. Cahoon and McKinley [137] analyze
the performance of the Inquery distributed information retrieval system.

Source selection and collection fusion issues have been investigated by Gra-
vano et al. using the GlOSS system [318], Voorhees et al. [792], Callan et al.
(139], Moffat and Zobel [574], Viles and French [787], and others.
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Chapter 10
User Interfaces and Visualization

by Marti A. Hearst

10.1 Introduction

This chapter discusses user interfaces for communication between human
information seekers and information retrieval systems. Information seeking is
an imprecise process. When users approach an information access system they
often have only a fuzzy understanding of how they can achieve their goals. Thus
the user interface should aid in the understanding and expression of information
needs. It should also help users formulate their queries, select among available
information sources, understand search results, and keep track of the progress of
their search.

The human-computer interface is less well understood than other aspects of
information retrieval, in part because humans are more complex than computer
systems, and their motivations and behaviors are more difficult to measure and
characterize. The area is also undergoing rapid change, and so the discussion in
this chapter will emphasize recent developments rather than established wisdom.

The chapter will first outline the human side of the information seeking
process and then focus on the aspects of this process that can best be supported
by the user interface. Discussion will encompass current practice and technology,
recently proposed innovative ideas, and suggestions for future areas of develop-
ment.

Section 10.2 outlines design principles for human-computer interaction and
introduces notions related to information visualization. section 10.3 describes
information seeking models. past and present. The next four sections describe
user interface support for starting the search process, for query specification, for
viewing retrieval results in context, and for interactive relevance feedback. The
last major section, section 10.8, describes user interface techniques to support
the information access process as a whole. Section 10.9 speculates on future
developments and Section 10.10 provides suggestions for further reading. Figure
10.1 presents the flow of the chapter contents.

257
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Introduction
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Figure 10.1 The flow of this chapter’s contents.

10.2 Human-Computer Interaction

What makes an effective human-computer interface? Ben Shneiderman, an ex-
pert in the field, writes [725, p.10]:

Well designed, effective computer systems generate positive feelings
of success, competence, mastery, and clarity in the user community.
When an interactive system is well-designed, the interface almost dis-
appears, enabling users to concentrate on their work, exploration, or
pleasure.

As steps towards achieving these goals, Shneiderman lists principles for
design of user interfaces. Those which are particularly important for informa-
tion access include (slightly restated): provide informative feedback, permit easy
reversal of actions, support an internal locus of control, reduce working mem-
ory load, and provide alternative interfaces for novice and expert users. Each
of these principles should be instantiated differently depending on the particu-
lar interface application. Below we discuss those principles that are of special
interest to information access systems.

10.2.1 Design Principles

Offer informative feedback. This principle is especially important for information
access interfaces. In this chapter we will see current ideas about how to provide
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users with feedback about the relationship between their query specification and
documents retrieved, about relationships among retrieved documents, and about
relationships between retrieved documents and metadata describing collections.
If the user has control of how and when feedback is provided, then the system
provides an internal locus of control.

Reduce working memory load. Information access is an iterative process,
the goals of which shift and change as information is encountered. One key way
information access interfaces can help with memory load is to provide mech-
anisms for keeping track of choices made during the search process, allowing
users to return to temporarily abandoned strategies, jump from one strategy to
the next, and retain information and context across search sessions. Another
memory-aiding device is to provide browsable information that is relevant to
the current stage of the information access process. This includes suggestions of
related terms or metadata, and search starting points including lists of sources
and topic lists.

Provide alternative interfaces for novice and expert users. An important
tradeoff in all user interface design is that of simplicity versus power. Simple
interfaces are easier to learn, at the expense of less flexibility and sometimes
less efficient use. Powerful interfaces allow a knowledgeable user to do more
and have more control over the operation of the interface, but can be time-
consuming to learn and impose a memory burden on people who use the system
only intermittently. A common solution is to use a ‘scaffolding’ technique [684].
The novice user is presented with a simple interface that can be learned quickly
and that provides the basic functionality of the application, but is restricted
in power and flexibility. Alternative interfaces are offered for more experienced
users, giving them more centrol, more options, and more features, or potentially
even entirely different interaction modeis. Good user interface design provides
intuitive bridges between the simple and the advanced interfaces.

Information access interfaces must contend with special kinds of simplic-
ity /power tradeoffs. One such tradeoff is the amount of information shown about
the workings of the search system itself. Users who are new to a system or to
a particular collection may not know enough about the system or the domain
associated with the collection to make choices among complex features. They
may not know how best to weight terms, or in the case of relevance feedback,
not know what the effects of reweighting terms would be. On the other hand,
users that have worked with a system and gotten a feeling for a topic are likely
to be able to choose among suggested terms to add to their query in an informed
manner. Determining how much information to show the user of the system is
a major design choice in information access interfaces.

10.2.2 The Role of Visualization

The tools of computer interface design are familiar to most computer users to-
day: windows, menus, icons, dialog boxes, and so on. These make use of bit-
mapped display and computer graphics to provide a more accessible interface
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than command-line-based displays. A less familiar but growing area is that of
information visualization, which attempts to provide visual depictions of very
large information spaces.

Humans are highly attuned to images and visual information (769, 456,
483]. Pictures and graphics can be captivating and appealing, especially if well
designed. A visual representation can communicate some kinds of information
much more rapidly and effectively than any other method. Consider the differ-
ence between a written description of a person’s face and a photograph of it, or
the difference between a table of numbers containing a correlation and a scatter
plot showing the same information.

The growing prevalence of fast graphics processors and high resolution color
monitors is increasing interest in information visualization. Scientific visualiza-
tion, a rapidly advancing branch of this field, maps physical phenomena onto
two- or three-dimensional representations [433]. An example of scientific visu-
alization is a colorful image of the pattern of peaks and valleys on the ocean
floor; this provides a view of physical phenomena for which a photograph cannot
(currently) be taken. Instead, the image is constructed from data that represent
the underlying phenomena.

Visualization of inherently abstract information is more difficult, and visu-
alization of textually represented information is especially challenging. Language
is our main means of communicating abstract ideas for which there is no obvious
physical manifestation. What does a picture look like that describes negotiations
over a trade agreement in which one party demands concessions on environmen-
tal policies while the other requires help in strengthening its currency?

Despite the difficulties, researchers are attempting to represent aspects of
the information access process using information visualization techniques. Some
of these will be described later in this chapter. Aside from using icons and
color highlighting, the main information visualization techniques include brushing
and linking (233, 773], panning and zooming [71], focus-plus-context [502], magic
lenses [95], and the use of animation to retain context and help make occluded
information visible {676, 143]. These techniques support dynamic, interactive
use. Interactivity seems to be an especially important property for visualizing
abstract information, although it has not played as large a role within scientific
visualization.

Brushing and linking refers to the connecting of two or more views of the
same data, such that a change to the representation in one view affects the
representation in the other views as well. For example, say a display consists of
two parts: a histogram and a list of titles. The histogram shows, for a set of
documents, how many documents were published each year. The title list shows
the titles for the corresponding documents. Brushing and linking would allow
the user to assign a color, say red, to one bar of the histogram, thus causing the
titles in the list display that were published during the corresponding year to
also be highlighted in red.

Panning and zooming refers to the actions of a movie camera that can scan
sideways across a scene (panning) or move in for a closeup or back away to get
a wider view (zooming). For example, text clustering can be used to show a
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top-level view of the main themes in a document collection (see Figures 10.7 and
10.8). Zooming can be used to move ‘closer,” showing individual documents as
icons, and then zoom in closer still to see the text associated with an individuai
document.

When zooming is used. the more detail that is visible about a particular
item, the less can be seen about the surrounding items. Focus-plus-context is
used to partly alleviate this effect. The idea is to make one portion of the view —
the focus of attention -— larger, while simultaneously shrinking the surrounding
objects. The farther an object is from the focus of attention, the smaller it is
made to appear, like the effect seen in a fisheye camera lens (also in some door
peepholes).

Magic lenses are directly manipulable transparent windows that. when
overlapped on some other data type, cause a transiormation to be applied to
the underlying data, thus changing its appearance (see Figure 10.13). The most
straightforward application of magic lenses is for drawing tasks. and it is espe-
cially useful if used as a two-handed interface. For example, the left hand can
be used to position a color lens over a drawing of an object. The right hand is
used to mouse-click on the lens, thus causing the appearance of the underlying
object to be transformed to the color specified by the lens.

Additionally, there are a large number of graphical methods for depicting
trees and hierarchies, some of which make use of animation to show nodes that
would otherwise be occluded (hidden from view by other nodes) (286, 364, 407,
478, 676.

It is often useful to combine these techniques into an interface layout con-
sisting of an overview plus details [321. 644]. An overview. such as a table-of-
contents of a large manual. is shown in one window. A mouse-click on the title of
the chapter causes the text of the chapter itself to appear in another window. in
a linking action (see Figure 10.19). Panning and zooming or focus-plus-context
can be used to change the view of the contents within the overview window.

10.2.3 Evaluating Interactive Systems

_From the viewpoint of user interface design, people have widely differing abili-
ties, preferences. and predilections. Important differences for information access
interfaces include relative spatial ability and memory, reasoning abilities, verbal
aptitude, and (potentially) personality differences [227. 725]. Age and cultural
differences can contribute to acceptance or rejection of interface techniques [557].
An interface innovation can be useful and pleasing for some users. and foreign
and cumbersome for others. Thus software design should allow for flexibility in
interaction style. and new features should not be expected to be equally helpful
for all users.

An important aspect of human-computer interaction is the methodology for
evaluation of user interface techniques. Precision and recall measures have been
widely used for comparing the ranking results of non-interactive systems. but are
less appropriate for assessing interactive systemis [470]. The standard evalnations



262 USER INTERFACES AND VISUALIZATION

emphasize high recall levels; in the TREC tasks systems are compared to see
how well they return the top 1000 documents (see chapter 3). However, in many
interactive settings, users require only a few relevant documents and do not care
about high recall to evaluate highly interactive information access systems, useful
metrics beyond precision and recall include: time required to learn the system,
time required to achieve goals on benchmark tasks, error rates, and retention of
the use of the interface over time. Throughout this chapter, empirical results of
user studies are presented whenever they are available.

Empirical data involving human users is time consuming to gather and
difficult to draw conclusions from. This is due in part to variation in users’ char-
acteristics and motivations, and in part to the broad scope of information access
activities. Formal psychological studies usually only uncover narrow conclusions
within restricted contexts. For example, quantities such as the length of time
it takes for a user to select an item from a fixed menu under various conditions
have been characterized empirically [142], but variations in interaction behavior
for complex tasks like information access are difficult to account for accurately.
Nielsen [605] advocates a more informal evaluation approach (called heuristic
evaluation) in which user interface affordances are assessed in terms of more
general properties and without concern about statistically significant results.

10.3 The Information Access Process

A person engaged in an information seeking process has one or more goals in
mind and uses a search system as a tool to help achieve those goals. Goals
requiring information access can range quite widely, from finding a plumber
to keeping informed about a business competitor, from writing a publishable
scholarly article to investigating an allegation of fraud.

Information access tasks are used to achieve these goals. These tasks span
the spectrum from asking specific questions to exhaustively researching a topic.
Other tasks fall between these two extremes. A study of business analysts [614]
found three main kinds of information seeking tasks: monitoring a well known
topic over time (such as researching competitors’ activities each quarter), fol-
lowing a plan or stereotyped series of searches to achieve a particular goal (such
as keeping up to date on good business practices), and exploring a topic in an
undirected fashion (as when getting to know an unfamiliar industry). Although
the goals differ, there is a common core revolving around the information seeking
component, which is our focus here.

10.3.1 Models of Interaction

Most accounts of the information access process assume an interaction cycle
consisting of query specification, receipt and examination of retrieval results,
and then either stopping or reformulating the query and repeating the process
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until a perfect result set is found {700, 726]. In more detail, the standard process
can be described according to the following sequence of steps (see Figure 10.2):

) Start with an information need.
(2) Select a system and collections to search on.
) Formulate a query.

4) Send the query to the system.

6) Scan, evaluate, and interpret the results.

(
(
(5) Receive the results in the form of information items.
(
(7) Either stop, or,

(

)
8) Reformulate the query and go to step 4.

This simple interaction model (used by Web search engines) is the only
model that most information seekers see today. This model does not take into
account the fact that many users dislike being confronted with a long disor-
ganized list of retrieval results that do not directly address their information
needs. It also contains an underlying assumption that the user’s information
need is static and the information seeking process is one of successively refining
a query until it retrieves all and only those documents relevant to the original
information need.

Information Need

Send to System

Receive Results

Figure 10.2 A simplified diagram of the standard model of the information access
processes.
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In actuality. users learn during the search process. They scan information,
read the titles in result sets. read the retrieved documents themselves, viewing
lists of topics related to their query terms, and navigating within hyperlinked
Web sites. The recent advent of hyperlinks as a pivotal part of the information
seeking process makes it no longer feasible to ignore the role of scanning and
navigation within the search process itself. In particular, today a near-miss is
much more acceptable than it was with biblingraphic search. since an information
secker using the Web can navigate hyperlinks from a near-miss in the hopes that
a useful page will be a few links away.

The standard model also downplays the interaction that takes place when
the user scans terms suggested as a result of relevance feedback, scans the-
saurus structures, or views thematic overviews of document collections. It de-
emphasizes the role of source selection, which is increasingly important now that,
for the first time. tens of thousands of information collections are immediately
reachable for millions of people.

Thus, while useful for describing the basics of information access systems,
this simple interaction model is being challenged on many fronts [65, 614, 105,
365, 192]. Bates [65] proposes the ‘berry-picking’ model of information seeking,
which has two main points. The first is that, as a result of reading and learning
from the information encountered throughout the search process, the users’ in-
formation needs. and consequently their queries, continually shift. Information
encountered at one point in a search may lead in a new, unanticipated direction.
The original goal may become partly fulfilled, thus lowering the priority of one
goal in favor of another. This is posed in contrast to the assumption of ‘standard’
information retrieval that the user's information need remains the same through-
out the search process. The second point is that users’ information needs are
not, satisfied by a single. final retrieved set of documents but rather by a series
of selections and bits of information found along the way. This is in contrast to
the assumption that the main goal of the search process is to hone down the set
of retrieved documents into a perfect match of the original information need.

The berry-picking model is supported by a number of observational studies
[236. 105], including that of O'Day and Jeffries [614]. They found that the
information seeking process consisted of a series of interconnected but diverse
searches on one problem-based theme. They also found that search results for a
goal tended to trigger new goals, and hence search in new directions, but that
the context of the problemn and the previous searches was carried from one stage
of search to the next. They also found that the main value of the search resided
in the accumulated learning and acquisition of information that occurred during
the search process. rather than in the final results set.

Thus, a user interface for information access should allow users to reassess
their goals and adjust their search strategy accordingly. A related situation
occurs when users encounter a ‘trigger’ that causes them to pursue a different
strategy temporarily, perhaps to return to the current unfinished activity at a
later time. An implication of these observations is that the user interface should
support scarch strategies by making it easy to follow trails with unanticipated re-
sults. This can be accomplished in part by supplying ways to record the progress
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of the current strategy and to store, find, and reload intermediate results, and
by supporting pursuit of multiple strategies simultaneously.

The user interface should also support methods for monitoring the status
of the current strategy in relation to the user’s current task and high-level goals.
One way to cast the activity of monitoring the progress of a search strategy
relative to a goal or subgoal is in terms of a cost/benefit analysis. or an analysis
of diminishing returns [690]. This kind of analysis assumes that at any point
in the search process, the user is pursuing the strategy that has the highest
expected utility. If. as a consequence of some local tactical choices. another
strategy presents itself as being of higher utility than the current one, the current
one is (temporarily or permanent!;) abandoned in favor of the new strategy.

There are a number of theories and frameworks that contrast browsing,
querying, navigating, and scanning along several dimensions [75. 159, 542, 804].
Here we assume that users scan information structure, be it titles, thesaurus
terms. hyperlinks, category labels. or the results of clustering. and then either
select a displayed item for some purpose (to read in detail. to usc as input to a
query, to navigate to a new page of information) or formulate a query (either by
recalling potential words or by selecting categories or suggested terms that have
been scanned). In both cases, a new set of information is then made viewable for
scanning. Queries tend to produce new. ad hoc collections of information that
have not been gathered together before, whereas selection retrieves information
that has already been composed or organized. Navigation refers to following
a chain of links, switching from one view to another. toward some goal, in a
sequence of scan and select operations. Browsing refers to the casual, mainly
undirected exploration of information structures, and is usually done in tandem
with selection, although queries can also be used to create subcollections to
browse through. An important aspect of the interaction process is that the
output of one action should be easily used as the input to the next.

10.3.2 Non-Search Parts of the Information Access Process

The O’Day and Jeffries study [614] found that information seeking is only one
part of the full work process their subjects were engaged in. In between searching
sessions many different kinds of work was done with the retrieved information,
including reading and annotating {617} and analysis. O’Day and Jeffries exam-
ined the analysis steps in more detail, finding that 80% of this work fell into
six main types: finding trends. making comparisons. aggregating information.
identifying a critical subset, assessing. and interpreting. The remaining 20%
consisted of cross-referencing, summarizing, finding evocative visualizations for
reports, and miscellaneous activities. The Sensemaking work of Russell et al.
[690] also discusses information work as a process in which information retrieval
plays only a small part. They observe that most of the effort made in Sensemak-
ing is in the synthesis of a good representation, or ways of thinking about. the
problem at hand. They describe the process of formulating and crystallizing the
important concepts for a given task.
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From these observations it is convenient to divide the entire information ac-
cess process into two main components: search/retrieval, and analysis/synthesis
of results. User interfaces should allow both kinds of activity to be tightly inter-
woven. However, analysis/synthesis are activities that can be done independently
of information seeking, and for our purposes it is useful to make a distinction
between the two types of activities.

10.3.3 Earlier Interface Studies

The bulk of the literature on studies of human-computer information seeking
behavior concerns information intermediaries using online systems consisting of
bibliographic records (e.g., [546, 707, 104]), sometimes with costs assessed per
time unit. Unfortunately, many of the assumptions behind those studies do not
reflect the conditions of modern information access [335, 222]. The differences
include the following:

o The text being searched now is often full text rather than bibliographic
citations. Because users have access to full text, rather than document
surrogates, it is more likely that simple queries will find relevant answers
directly as part of the search process.

e Modern systems use statistical ranking (which is more effective when ab-
stracts and full text are available than when only titles and citations are
available) whereas most studies were performed on Boolean systems.

e Much of modern searching is done by end users, many new to online search-
ing, rather than professional intermediaries, which were the focus of many
of the earlier studies.

o Tens of thousands of sources are now available online on networked infor-
mation systems, and many are tightly coupled via hyperlinks, as opposed
to being stored in separate collections owned by separate services. Ear-
lier studies generally used systems in which moving from one collection to
another required prior knowledge of the collections and considerable time
and effort to switch. A near miss is much more useful in this hyperlinked
environment than in earlier systems, since hyperlinks allow users to nav-
igate from the near miss directly to the source containing information of
interest. In a card catalog environment, where documents are represented
as isolated units, a near miss consists of finding a book in the general area
of interest and then going to the bookshelf in the library to look for related
books, or obtaining copies of many issues of a journal and scanning for
related articles.

e Finally, most users have access to bit-mapped displays allowing for direct
manipulation, or at least form fillin. Most earlier studies and bibliographic
systems were implemented on TTY displays, which require command-line
based syntax and do a poor job of retaining context.

’
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Despite these significant differences, some general information seeking
strategies have been identified that seem to transfer across systems. Addition-
ally, although modern systems have remedied many of the problems of earlier
online public access catalogs, they also introduce new problems of their own.

10.4 Starting Points

Search interfaces must provide users with good ways to get started. An empty
screen or a blank entry form does not provide clues to help a user decide how to
start the search process. Users usually do not begin by creating a long, detailed
expression of their information need. Studies show that users tend to start out
with very short queries, inspect the results, and then modify those queries in
an incremental feedback cycle [22]. The initial query can be seen as a kind of
‘testing the water’ to see what kinds of results are returned and get an idea of
how to reformulate the query [804, 65]. Thus, one task of an information access
interface is to help users select the sources and collections to search on.

For example, there are many different information sources associated with
cancer, and there are many different kinds of information a user might like to
know about cancer. Guiding the user to the right set of starting points can
help with the initial problem formulation. Traditional bibliographic search as-
sumes that the user begins by looking through a list of names of sources and
choosing which collections to search on, while Web search engines obliterate the
distinctions between sources and plunge the user into the middle of a Web site
with little information about the relationship of the search hit to the rest of the
collection. In neither case is the interface to the available sources particularly
helpful.

In this section we will discuss four main types of starting points: lists,
overviews, examples, and automnated source selection.

10.4.1 Lists of Collections

Typical online systems such as LEXIS-NEXIS require users to begin any inquiry
with a scan through a long list of source names and guess which ones will be of
interest. Usually little information beyond the name of the collection is provided
online for these sources (see Figure 10.3). If the user is not satisfied with the
results on one collection, they must reissue the query on another collection.
Frequent searchers eventually learn a set of sources that are useful for their
domains of interest. either through experience, formal training, or recommen-
dations from friends and colleagues. Often-used sources can be stored on a
‘favorites’ list, also known as a bookmark list or a hotlist on the Web. Recent
research explores the maintenance of a personalized information profile for users
or work groups, based on the kinds of information they ve used in the past [277].°
However, when users want to search outside their domains of expertise, a
list of familiar sources is not sufficient. Professional searchers such as librarians
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Figure 10.3 The LEXIS-NEXIS source selection screen.

learn through experience and vears of training which sources are appropriate
for various information needs. The restricted nature of traditional interfaces
to information collections discourages exploration and discovery of new useful
sources. However. recently researchers have devised a number of mechanisms to
help users understand the contents of collections as a way of getting started in
their search.

10.4.2 Overviews

Faced with a large set of text collections, how can a user choose which to begin
with? One approach is to study an overview of the contents of the collections.
An overview can show the topic domains represented within the collections, to
help users select or eliminate sources from consideration. An overview can help
users get started, directing them into general neighborhoods, after which they
can navigate using more detailed descriptions. Shneiderman [724] advocates an
interaction model in which the user begins with an overview of the information
to be worked with, then pans and zooms to find areas of potential interest, and
then view details. The process is repeated as often as necessary.

Three types of overviews are discussed in this subsection. The first is dis-
play and navigation of large topical category hierarchies associated with the doc-
uments of a collection. The second is automatically derived overviews, usually
created by unsupervised clustering techniques on the text of documents, that at-
tempt to extract overall characterizing themes from collections. The third type
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of overview is that created by applying a variant of co-citation analysis on con-
nections or links between different entities within a collection. Other kinds of
overviews are possible, for example, showing graphical depictions of bookshelves
or piles of books [681, 46].

Category or Directory Overviews

There exist today many large online text collections to which category labels have
been assigned. Traditional online bibliographic systems have for decades assigned
subject headings to books and other documents [752]. MEDLINE, a large col-
lection of biomedical articles, has associated with it Medical Subject Headings
(MeSH) consisting of approximately 18,000 categories [523]. The Association
for Computing Machinery (ACM) has developed a hierarchy of approximately
1200 category (keyword) labels.t Yahoo![839]. one of the most popular search
sites on the World Wide Web, organizes Web pages into a hierarchy consisting
of thousands of category labels.

The popularity of Yahoo! and other Web directories suggests that hier-
archically structured categories are useful starting points for users seeking in-
formation on the Web. This popularity may reflect a preference to begin at a
logical starting point, such as the home page for a set of information, or it may
reflect a desire to avoid having to guess which words will retrieve the desired
information. (It may also reflect the fact that directory services attempt to cull
out low quality Web sites.)

The meanings of category labels differ somewhat among collections. Most
are designed to help organize the documents and to aid in query specification.
Unfortunately, users of online bibliographic catalogs rarely use the available sub-
ject headings [335, 222]. Hancock-Beaulieu and Drabenstott and Weller, among
others, put much of the blame on poor (command line-based) user interfaces
which provide little aid for selecting subject labels and require users to scroll
through long alphabetic lists. Even with graphical Web interfaces, finding the
appropriate place within a category hierarchy can be a time-consuming task,
and once a collection has been found using such a representation, an alternative
means is required for searching within the site itself.

Most interfaces that depict category hierarchies graphically do so by asso-
ciating a document directly with the node of the category hierarchy to which it
has been assigned. For example, clicking on a category link in Yahoo! brings up
a list of documents that have been assigned that category label. Conceptually,
the document is stored within the category label. When navigating the results
of a search in Yahoo!, the user must look through a list of category labels and
guess which one is most likely to contain references to the topic of interest. A
wrong path requires backing up and trying again, and remembering which pages
contain which information. If the desired information is deep in the hierarchy, or

1 http://wwv.acm.org/class
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Figure 10.4 The MeSHErowse interface for viewing category labels hierarchically
(453].

not available at all, this can be a time-consuming and frustrating process. Be-
cause documents are conceptually stored ‘inside’ categories, users cannot create
queries based on combinations of categories using this interface.

It is difficult to design a good interface to integrate category selection into
query specification, in part because display of category hierarchies takes up large
amounts of screen space. For example, Internet Grateful Medf is a Web-based
service that allows an integration of search with display and selection of MeSH
category labels. After the user types in the name of a potential category label,
a long list of choices is shown in a page. To see more information about a given
label, the user selects a link (e.g., Radiation Injuries). The causes the context of
the query to disappear because a new Web page appears showing the ancestors of
the term and its immediate descendants. If the user attempts to see the siblings
of the parent term (Wounds and Injuries) then a new page appears that changes
the context again. Radiation Injuries appears as one of many siblings and its
children can no long be seen. To go back to the query, the illustration of the
category hierarchy disappears.

The MeSHBrowse system [453] allows users to interactively browse a subset
of semantically associated links in the MeSH hierarchy. From a given starting
point, clicking on a category causes the associated categories to be displayed
in a two-dimensional tree representation. Thus only the relevant subset of the

! http://igm.nlm.nih.gov:80/
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Figure 10.5 The HiBrowse interface for viewing category labels hierarchically and
according to facets {646].

hierarchy is shown at one time, making browsing of this very large hierarchy a
more tractable endeavor. The interface has the space limitations inberent in a
two-dimensional hierarchy display and does not provide mechanisms for search
over an underlying document collection. See Figure 10.4

The HiBrowse system [646] represents category metadata more efficiently
by allowing users to display several different subsets of category metadata si-
multaneously. The user first selects which attribute type (or facet, as attributes
are called in this system). to display. For exampie. the user inay first choose the
‘physical disease’ value for the Disease facet. The categories that appear one
level below this are shown along with the number of documents that contain
each category. The user can then select other attribute types, such as Therapy
and Groups (by age). The number of documents that contain attributes from
all three types are shown. If the user now selects a refinement of one of the
categories, such as the ‘child’ value for the Groups attribute, then the number
of documents that contain all three selected facet types are shown. At the same
time, the number of documents containing the subcategories found below ‘phys-
ical disease’ and ‘therapy (general)’ are updated to reflect this more restricted
specification. See Figure 10.5. A problem with the HiBrowse system is that it
requires users to navigate through the category hierarchy, rather than specify
queries directly. In other words, query specification is not tightly coupled with
display of category metadata. As a solution to some of these problems, the
Cat-a-Cone interface [358] will be described in section 10.8.
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Automatically Derived Collection Overviews

Many attempts to display overview information have focused on automatically
extracting the most common general themes that occur within the collection.
These themes are derived via the use of unsupervised analysis methods, usually
variants of document clustering. Clustering organizes documents into groups

- based on similarity to one another; the centroids of the ‘clusters determine the
themes in the collections.

The Scatter/Gather browsing paradigm (203, 202] clusters documents into
topically-coherent groups, and presents descriptive textual summaries to the
user. The summaries consist of topical terms that characterize each cluster
generally, and a set of typical titles that hint at the contents of the cluster.
Informed by the summaries, the user may select a subset of clusters that seem to
be of niost interest, and recluster their contents. Thus the user can examine the
contents of each subcollection at progressively finer granularity of detail. The
reclustering is computed on-the-fly; different themes are produced depending on
the documents contained in the subcollection to which clustering is applied. The
choice of clustering algerithm influences what clusters are produced, but no one
algorithm has been shown to be particularly better than the rest when producing
the same number of clusters [816].

A user study [640] showed that the use of Scatter/Gather on a large text
collection successfully conveys some of the content and structure of the corpus.
However, that study also showed that Scatter /Gather without a search facility
was less effective than a standard similarity search for finding relevant documents
for a query. That is, subjects allowed only to navigate, not to search over, a
hierarchical structure of clusters covering the entire collection were less able to
find documents relevant to the supplied query than subjects allowed to write
queries and scan through retrieval results. .

It is possible to integrate Scatter/Gather with conventional search tech-
nology by applying clustering on the results of a query to organize the retrieved
documents (see Figure 10.6). An offline experiment {359] suggests that clustering
may be more effective if used in this manner. The study found that documents
relevant to the query tend to fall mainly into one or two out of five clusters, if
the clusters are generated from the top-ranked documents retrieved in response
to the query. The study also showed that precision and recall were higher within
the best cluster than within the retrieval results as a whole. The implication is
that a user might save time by looking at the contents of the cluster with the
highest proportion of relevant documents and at the same time avoiding those
clusters with mainly non-relevant documents. Thus, clustering of retrieval re-
sults may be useful for helping direct users to a subset of the retrieval results
that contain a large proportion of the relevant documents.

General themes do seem to arise from document clustering, but the themes
are highly dependent on the makeup of the documents within the clusters (359,
357]. The unsupervised nature of clustering can result in a display of topics at
varying levels of description. For example, clustering a collection of documents
about computer science might result in clusters containing documents about
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Figure 10.6 Display of Scatter/Gather clustering retrieval results [203].

artificial intelligence, computer theory, computer graphics, computer architec-
ture, programming languages, government, and legal issues. The latter two
themes are more general than the others, because they are about topics out-
side the general scope of computer science. Thus clustering can results in the
juxtaposition of very different levels of description within a single display.

Scatter/Gather shows a textual representation of document clusters. Re-
searchers have developed several approaches to map documents from their high
dimensional representation in document space into a 2D representation in which
each document is represented as a small glyph or icon on a map or within an
abstract 2D space. The functions for transforming the data into the lower di-
mensional space differ, but the net effect is that each document is placed at
one point in a scatter-plot-like representation of the space. Users are meant
to detect themes or clusters in the arrangement of the glyphs. Systems em-
ploying such graphical displays include BEAD [156], the Galaxy of News [671],
and ThemeScapes [821]. The ThemeScapes view imposes a three-dimensional
representation on the results of clustering (see Figure 10.7). The layout makes
use of ‘negative space’ to help emphasize the areas of concentration where the
clusters occur. Other systems display inter-document similarity hierarchically
[529, 14], while still others display retrieved documents in networks based on
inter-document similarity {262, 761].

Kohonen’s feature map algorithm has been used to create maps that graph-
ically characterize the overall content of a document collection or subcollection
[520, 163] (see Figure 10.8). The regions of the 2D map vary in size and shape cor-
responding to how frequently documents assigned to the corresponding themes
occur within the collection. Regions are characterized by single words or phrases,
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Figure 10.7 A three-dimensional overview based on document clustering [821).

and adjacency of regions is meant to reflect semantic relatedness of the themes
within the collection. A cursor moved over a document region causes the titles
of the documents most strongly associated with that region to be displayed in a
pop-up window. Documents can be associated with more than one region.

Evaluations of Graphical Overviews

Although intuitively appealing. graphical overviews of large document spaces
have yet to be shown to be useful and understandable for users. In fact, eval-
uations that have been conducted so far provide negative evidence as to their
usefulness. One study found that for non-expert users the results of clustering
were difficult to use, and that graphical depictions (for example, representing
clusters with circles and lines counecting documents) were much harder to use
than textual representations (for example, showing titles and topical words, as
in Scatter/Gather), because docuinents’ contents are difficult to discern without
actually reading some text {443].

Another recent study compared the Kohonen featurc map overview rep-
resentation on a browsiug task to that of Yahoo! [163]. For one of the tasks,
subjects were asked to find an ‘interesting’ Web page within the entertainment
category of Yahoo! and of an organization of the same Web pages into a Ko-
honen map layout. The experiment variecd whether subjects started in Yahoo!
or in the graphical map. After completion of the browing task, subjects were
asked to attempt to repeat the browse using the other tool. For the subjects that
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learning algorithm on Web pages having to do with the topic Entertainment [163].

began with the Kohonen map visualization, 11 out of 15 found an interesting
page within ten mirutes. Eight of these were able to find the same page using
Yahoo!. Of the subjects who started with Yahoo!, 14 out of 16 were able to find
interesting home pages. However, only two of the 14 were able to find the page
in the graphical map display! This is strong evidence against the navigability of
the display and certainly suggests that the simple label view provided by Yahoo!
is more useful. However, the map display may be more useful if the system is
modified to tightly integrate querying with browsing.

The subjects did prefer some aspects of the map representation. In partic-
ular, some liked the ease of being able to jurnp from one area to another without
having to back up as is required in Yahoo!, and some liked the fact that the
maps have varying levels of granularity. The subjects disliked several aspects of
the display. The experimenters found that some subjects expressed a desire for
a visible hierarchical organization, others wanted an ability to zoom in on a sub-
area to get more detail, and some users disliked having to look through the entire
map to find a theme, desiring an alphabetical ordering instead. Many found the
single-term labels to be misleading, in part because they were ambiguous (one
region called ‘BILL’ was thought to correspond to a person’s name rather than
counting money).

The authors concluded that this interface is more appropriate for casual
browsing than for search. In general, unsupervised thematic overviews are per-
haps most useful for giving users a ‘gist’ of the kinds of information that can be
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found within the document collection, but generally have not been shown to be
helpful for use in the information access process.

Co-citation Clustering for Overviews

Citation analysis has long been recognized as a way to show an overview of the
contents of a collection [812]. The main idea is to determine ‘centrally-located’
documents based on co-citation patterns. There are different ways to determine
citation patterns: one method is to measure how often two articles are cited
together by a third. Another alternative is to pair articles that cite the same
third article. In both cases the assumption is that the paired articles share some
commonalities. After a matrix of co-citations is built, documents are clustered
based on the similarity of their co-citation patterns. The resulting clusters are
interpreted to indicate dominant themes within the collectiomn. Clustering can
focus on the authors of the documents rather than the contents, to attempt to
identify central authors within a field. This idea has recently been implemented
using Web-based documents in the Referral Web pro ject [432]. The idea has also
been applied to Web pages, using Web link structure to identify major topical
themes among Web pages [485, 639]. A similar idea, but computed a different
way, is used to explicitly identify pages that act as good starting points for
particular-topics (called ‘authority pages’ by Kleinberg [444]).

10.4.3 Examples, Dialogs, and Wizards

Another way to help users get started is to start them off with an example of
interaction with the system. This technique is also known as retrieval by re-
formulation. An early version of this idea is embodied in the Rabbit system
[818] which provides graphical representations of example database queries. A
general framework for a query is shown to the user who then modifies it to
construct a partially complete description of what they want. The system then
shows an example of the kind of information available that matches this partial
description. For instance, if a user searching a computer products database indi-
cates an interest in disks, an example item is retrieved with its disk descriptors
filled in. The user can use or modify the displayed descriptors, and iterate the
procedure.

The idea of retrieval by reformulation has been developed further and ex-
tended to theé domains of user interface development [581] and software engi-
neering [669]. The Helgon system [255] is a modern variant of this idea applied
to bibliographic database information. In Helgon, users begin by navigating a
hierarchy of topics from which they select structured examples, according to
their interests. If a feature of an example is inappropriately set, the user can
modify the feature to indicate how it would appear in the desired information.
Unfortunately, in tests with users, the system was found to be problematic.
Users had problems with the organization of the hierarchy, and found that search- :
ing for a useful example by critiquing an existing one 4o be tedious. This result
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underscores an unfortunate difficulty with examples and dialogues: that of get-
ting the user to the right starting dialogue or the right example strategy becomes
a search problem in itself. (How to index prior examples is studied extensively
in the case-based reasoning (CBR) literature [492, 449].)

A more dynamic variation on this theme is the interactive dialog. Dialog-
based interfaces have been explored since the early days of information retrieval
research, in an attempt to mimic the interaction provided by a human search
intermediary (e.g., a reference librarian). Oddy did early work in the THOMAS
system, which provided a question and answer session within a command-line-
based interface [615]. More recently, Belkin et al. have defined quite elaborate
dialog interaction models [75] although these have not been assessed empirically
to date.

The DLITE system interface [192] uses an animated focus-plus-context
dialog as a way to acquaint users with standard.sequences of operations within
the system. Initially an outline of all of the steps of the dialog is shown as a
list. The user can expand the explanation of any individual step by clicking on
its description. The user can expand out the entire dialog to see what questions
are coming next, and then collapse it again in order to focus on the current
tactic.

A more restricted form of dialog that has become widely used in com-
mercial products is that of the wizard. This tool helps users in time-limited
tasks, but does not attempt to overtly teach the processes required to complete
the tasks. The wizard presents a step-by-step shortcut through the sequence of
menu choices (or tactics) that a user would normally perform in order to get a
job done, reducing user input to just a few choices with default settings [636]. A
recent study {145] found wizards to be useful for goals that require many steps,
for users who lack necessary domain knowledge (for example, a restaurant owner
instailing accounting software), and when steps must be completed in a fixed
sequence (for example, a procedure for hiring personnel). Properties of success-
ful wizards included allowing users to rerun a wizard and modify their previous
work, showing an overview of the supported functions, and providing lucid de-
scriptions and understandable outcomes for choices. Wizards were found not to
be helpful when the interface did not solve a problem effectively (for example, a
commercial wizard for setting up a desktop search index requests users to specify
how large to make the index, but supplies no information about how to make
this decision). Wizards were also found not to be helpful when the goal was to
teach the user how to use the interface, and when the wizard was not user-tested.
It maybe the case that information access is too variable a process for the use of
wizards.

A guided tour leads a user through a sequence of navigational choices
through hypertext links, presenting the nodes in a logical order for some goal.
In a dynamic tour, only relevant nodes are displayed, as opposed to the static
case where the author decides what is relevant before the users have even for-
mulated their queries [329]. A recent application is the Walden Paths project
which enables teachers to define instructionally useful paths through pages found
on the Web [289]. This approach has not been commonly used to date for
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information access but could be a promising direction for acquainting users with
search strategies in large hyperlinked systems.

10.4.4 Automated Source Selection

Human-computer interfaces for helping guide users to appropriate sources is a
wide open area for research. It requires both eliciting the information need from
users and understanding which needs can be satisfied by which sources. An
ambitious approach is to build a model of the source and of the information
need of the user and try to determine which fit together best. User modeling
systems and intelligent tutoring systems attempt to do this both for general
domains {204, 814] and for online help systems [378].

A simpler alternative is to create a representation of the contents of in-
formation sources and match this representation against the query specification.
This approach is taken by GlOSS, a system which tries to determine in advance
the best bibliographic database to send a search request to, based on the terms
in the query [765]. The system uses a simple analysis of the combined frequencies
of the query words within the individual collections. The SavvySearch system
[383] takes this idea a step further, using actions taken by users after a query to
decide how to decrease or increase the ranking of a search engine for a particular
query (see also Chapter 13).

The flip side to automatically selecting the best source for a query is to
automatically send a query to multiple sources and then combine the results from
the various systems in some way. Many metasearch engines exist on the Web.
How to combine the results effectively is an active area of research, sometimes
known as collection fusion [63, 767, 388].

10.5 Query Specification

To formulate a query, a user must select collections, metadata descriptions, or
information sets against which the query is to be matched, and must specify
words, phrases, descriptors, or other kinds of information that can be compared
to or matched against the information in the collections. As a result, the system
creates a set of documents, metadata, or other information type that match the
query specification in some sense and displays the results to the user in some
form.

Shneiderman ([725] identifies five primary human-computer interaction
styles. These are: command language, form fillin, menu selection, direct manip-
ulation, and natural language.§ Each technique has been used in query specifica-
tion interfaces and each has advantages and disadvantages. These are described
below in the context of Boolean query specification.

§ This list omits non-visual modalities, such as audio.
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10.5.1 Boolean Queries

In modern information access systems the matching process usually employs a
statistical ranking algorithm. However, until recently most commercial full-text
systems and most bibliographic systems supported only Boolean queries. Thus
the focus of many information access studies has been on the problems users
have in specifying Boolean queries. Unfortunately, studies have shown time and
again that most users have great difficulty specifying queries in Boolean format
and often misjudge what the results will be [111, 322, 558, 841].

Boolean queries are problematic for several reasons. Foremost among these
is that most people find the basic syntax counter-intuitive. Many English-
speaking users assume everyday semantics are associated with Boolean oper-
ators when expressed using the English words AND and OR, rather than their
logical equivalents. To inexperienced users, using AND implies the widening of
the scope of the query, because more kinds of information are being requested.
For instance, ‘dogs and cats’ may imply a request for documents about dogs
and documents about cats, rather than documents about both topics at once.
‘Tea or coffee’ can imply a mutually exclusive choice in everyday language. This
kind of conceptual problem is well documented {111, 322, 558, 841]. In addi-
tion, most query languages that incorporate Boolean operators also require the
user to specify complex syntax for other kinds of connectors and for descriptive
metadata. Most users are not familiar with the use of parentheses for nested
evaluation, nor with the notions associated with operator precedence.

By serving a massive audience possessing little query-specification expe-
rience, the designers of World Wide Web search engines have had to come up
with more intuitive approaches to query specification. Rather than forcing users
to specify complex combinations of ANDs and ORs, they allow users to choose
from a selection of common simple ways of combining query terms, including ‘all
the words’ (place all terms in a conjunction) and ‘any of the words’ (place all
terms in a disjunction).

Another Web-based solution is to allow syntactically-based query specifica-
tion, but to provide a simpler or more intuitive syntax. The ‘4’ prefix operator
gained widespread use with the advent of its use as a mandatory specifier in the
Altavista Web search engine. Unfortunately, users can be misled to think it is
an infix AND rather than a prefix mandatory operator, and thus assume that
‘cat + dog’ will only retrieve articles containing both terms (where in fact this
query requires dog but allows cat to be optional).

Another problem with pure Boolean systems is they do not rank the re-
trieved documents according to their degree of match to the query. In the pure
Boolean framework a document either satisfies the query or it does not. Com-
mercial systems usually resort to ordering documents according to some kind of
descriptive metadata, usually in reverse chronological order. (Since these sys-
tems usually index timely data corresponding to newspaper and news wires, date
of publication is often one of the most salient features of the document.) Web-
based systems usually rank order the results of Boolean queries using statistical
algorithms and Web-specific heuristics.
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10.5.2 From Command Lines to Forms and Menus

Aside from conceptual misunderstandings of the logical meaning of AND and
OR, another part of the problem with pure Boolean query specification in online
bibliographic systems is the arbitrariness of the syntax and the contextlessness
nature of the TTY-based interface in which they are predominantly available.
Typically input is typed at a prompt and is of a form something like the following:

COMMAND ATTRIBUTE value {BOOLEAN-OPERATOR AT-
TRIBUTE value}*

e.g.,

FIND PA darwin AND TW species OR TW descent

or

FIND TW Mt St. Helens AND DATE 1981

(These examples are derived from the syntax of the telnet interface to
the University of California Melvyl system [526].) The user must remember the
commands and attribute names, which are easily forgotten between usages of the
system [553]. Compounding this problem, despite the fact that the command
languages for the two main online bibliographic systems at UC Berkeley have
different but very similar syntaxes, after more than ten years one of the systems
still reports an error if the author field is specified as PA instead of PN, as is
done in the other system. This lack of flexibility in the syntax is characteristic
of interfaces designed to suit the system rather than its users.

The new Web-based version of Melvyl|| provides form fillin and menu se-
lection so the user no longer has to remember the names and types of attributes
available. Users select metadata types from listboxes and attributes are shown
explicitly, allowing selection as an alternative to specification. For example, the
‘search type’ field is adjacent to an entry form in which users can enter keywords,
and a choice between AND and NOT is provided adjacent to a list of the avail-
able document types (editorial, feature, etc.). Only the metadata associated
with a given collection is shown in the context of search over that collection.
(Unfortunately the system is restricted to searching over only one database at a
time. It does however provide a mechanism for applying a previously executed
search to a new database.) See Figure 10.9.

The Web-based version of Melvyi also allows retention of context between
searches, storing prior results in tables and hyperlinking these results to lists
containing the retrieved bibliographic information. Users can also modify any of
the previously submitted queries by selecting a checkbox beside the record of the
query. The graphical display makes explicit and immediate many of the powerful
options of the system that most users would not learn using the command-line
version of the interface.

Bit-mapped displays are an improvement over command-line interface, but
do not solve all the problems. For example, a blank entry form is in some ways

|| http://www.melvyl.ucop.edu/
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bibliographic catalog. Copyright © 1998, The Regents of the University of California.

not much better than a TTY prompt, because it does not provide the user with
clues about what kinds of terms should be entered.

10.5.3 Faceted Queries

Yet another problem with Boolean queries is that their strict interpretation tends
to yield result sets that are either too large, because the user includes many terms
in a disjunct, or are empty, because the user conjoins terms in an effort to reduce
the result set. This problem occurs in large part because the user does not know
the contents of the collection or the role of terms within the collection.

A common strategy for dealing with this problem, employed in systems
with command-line-based interfaces like DIALOGs, is to create a series of short
queries, view the number of documents returned for each, and combine those
queries that produce a reasonable number of results. For example, in DIALOG,
each query produces a resulting set of documents that is assigned an identifying
name. Rather than returning a list of titles themselves, DIALOG shows the
set number with a listing of the number of matched documents. Titles can be
shown by specifying the set number and issuing a command to show the titles.
Document sets that are not empty can be referred to by a set name and combined
with AND operations to produce new sets. If this set in turn is too small, the
user can back up and try a different combination of sets, and this process is
repeated in pursuit of producing a reasonably sized document set.

This kind of query formulation is often called a faceted query. to indicate
that the user’s query is divided into topics or facets, each of which should be
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present in the retrieved documents {553, 348]. For example, a query on drugs
for the prevention of osteoporosis might consist of three facets, indicated by the
disjuncts

(osteoporosis OR ‘bone loss’)
(drugs OR pharmaceuticals)
(prevention OR cure)

This query implies that the user would like to view documents that contain all
three topics.

A technique to impose an ordering on the results of Boolean queries is
what is known as post-coordinate or quorum-level ranking [700, Ch. 8|. In this
approach, documents are ranked according to the size of the subset of the query
terms they contain. So given a query consisting of ‘cats,” ‘dogs,’ ‘fish,” and ‘mice,’
the system would rank a document with at least one instance of ‘cats,” ‘dogs,’
and ‘fish’ higher than a document containing 30 occurrences of ‘cats’ but no
occurrences of the other terms.

Combining faceted queries with quorum ranking yields a situation inter-
mediate between full Boolean syntax and free-form natural language queries.
An interface for specifying this kind of interaction can consist of a list of entry
lines. The user enters one topic per entry line, where each topic consists of a list
of semantically related terms that are combined in a disjunct. Documents that
contain at least one term from each facet are ranked higher than documents con-
taining terms only from one or a few facets. This helps ensure that documents
which contain discussions of several of the user’s topics are ranked higher than
those that contain only one topic. By only requiring that one term from each
facet be matched, the user can specify the same concept in several different ways
in the hopes of increasing the likelihood of a match. If combined with graphical
feedback about which subsets of terms matched the document, the user can see
the results of a quorum ranking by topic rather than by word. Section 10.6
describes the TileBars interface which provides this type of feedback.

This idea can be extended yet another step by allowing users to weight
each facet. More likely to be readily usable, however, is a default weighting in
which the facet listed highest is assigned the most weight, the second facet is
assigned less weight, and so on, according to some distribution over weights.

10.5.4 Graphical Approaches to Query Specification

Direct manipulation interfaces provide an alternative to command-line syntax.
The properties of direct manipulation are [725, p.205]: (1) continuous represen-
tation of the object of interest, (2) physical actions or button presses instead of
complex syntax, and (3) rapid incremental reversible operations whose impact
on the object of interest is immediately visible. Direct manipulation interfaces
often evoke enthusiasm from users, and for this reason alone it is worth exploring
their use. Although they are not without drawbacks, they are easier to use than
other methods for many users in many contexts.
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Figure 10.10 The VQuery Venn diagram visualization for Boolean query specifica~
tion [417].

Several variations of graphical interfaces, both directly manipulable and
static, have been developed for simplifying the specification of Boolean syntax.
User studies tend to reveal that these graphical interfaces are more effective in
terms of accuracy and speed than command-language counterparts. Three such
approaches are described below.

Graphical depictions of Venn diagrams have been proposed several times as
a way to improve Boolean query specification. A query term is associated with
a ring or circle and intersection of rings indicates conjunction of terms. Typi-
cally the number of documents that satisfy the various conjuncts are displayed
within the appropriate segments of the diagram. Several studies have found
such interfaces more effective than their command-language-based syntax [417,
368, 558]. Hertzum and Frokjaer found that a simple Venn diagram represen-
tation produced faster and more accurate results than a Boolean query syntax.
However, a problem with this format is the limitations on the complexity of
the expression. For example, a maximum of three query terms can be ANDed
together in a standard Venn diagram. Innovations have been designed to get
around this problem, as seen in the VQuery system [417] (see Figure 10.10). In
VQuery, a direct manipulation interface allows users to assign any number of
query terms to ovals. If two or more ovals are placed such that they overlap
with one another, and if the user selects the area of their intersection, an AND
is implied among those terms. (In Figure 10.10, the term ‘Query’ is conjoined
with ‘Boolean’.) If the user selects cutside the area of intersection but within
the ovals, an OR is implied among the corresponding terms. A NOT operation
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Figure 10.11  The filter-flow visualization for Boolean query specification [841].

is associated with any term whose oval appears in the active area of the display
but which remains unselected (in the figure, NOT ‘Ranking’ has been specified).
An active area indicates the current query; all groups of ovals within the active
area are considered part of a conjunction. Ovals containing query terms can be
moved out of the active area for later use.

Young and Shneiderman [841] found improvements over standard Boolean
syntax by providing users with a direct manipulation filter-flow model. The user
is shown a scrollable list of attribute types on the left-hand side and selects at-
tributes from another list of attribute types shown across the top of the screen.
Clicking on an attribute name causes a listbox containing values for those at-
tributes to be displayed in the main portion of the screen. The user then selects
which values of the attributes to let the flow go through. Placing two or more of
these attributes in sequence creates the semantics of a conjunct over the selected
values. Placing two. or more of these in parallel creates the semantics of a dis-
junct. The number of documents that match the query at each point is indicated
by the width of the ‘water’ flowing from one attribute to the next. (See Figure
10.11.) A conjunct can reduce the amount of flow. The items that match the full
query are shown on the far right-hand side. A user study found that fewer er-
rors were made using the filter flow model than a standard SQL database query.
However, the examples and study pertain only to database querying rather than
information access. since the possible query terms for information access cannot
be represented realistically in a scrollable list. This interface could perhaps be
modified to better suit information access applications by having the user supply
initial query terms, and using the attribute selection facility to show those terms
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Figure 10.12 A block-oriented diagram visualization for Boolean query specification
21], |

that are conceptually related to the query terms. Another alternative is to use
this display as a category metadata selection interface (see Section 10.4).

Anick et al. [21] describe another innovative direct manipulation interface
for Boolean queries. Initially the user tvpes a natural language query which is
automatically converted to a representation in which each query term is rep-
resented within a block. The blocks are arranged into rows and columns (See
Figure 10.12). If two or more blocks appear along the same row they are con-
sidered to be ANDed together. Two or more blocks within the same column are
ORed. Thus the user can represent a technical term in multiple ways within the
same query, providing a kind of faceted query interface. For example, the terms
‘version 5, ‘version 5.0, and ‘v5’ might be shown in the same column. Users can
quickly experiment with different combinations of terins within Boolean queries
simply by activating and deactivating blocks. This facility also allows users to
have multiple representations of the same term in different places throughout the
display, thus allowing rapid feedback on the consequences of specifying various
combinations of query terms. Informal evaluation of the system found that users
were able to learn to manipulate the interface quickly and enjoyed using it. It
was not formally compared to other interaction techniques [21].

This interface provides a kind of query preview: a low cost, rapid turnaround
visualization of the results of many variations on a query [643]. Another example
of query previewing can be found in some help svstems. which show all the words
in the index whose first letters match the characters that the user has typed so
far. The more characters tvped. the fewer possible matches become available.
The HiBrowse system described above [646] also provides a kind of preview for
viewing category hierarchies and facets, showing how many documents would be
matched if a category one level below the current one were selected. It perhaps
could be improved by showing the consequences of more combinations of cate-
gories in an animated manner. If based on prior action and interests of the user,
query previewing may become more generally applicable for information access
interfaces.
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Figure 10.13 A magic lens interface for query specification (courtesy of Ken
Fishkin).

A final example of a graphical approach to query specification is the use
of magic lenses. Fishkin and Stone have suggested an extension to the usage of
this visualization tool for the specification of Boolean ¢ueries {256]. Information
is represented as lists or icons within a 2D space. Leunses act as filters on the
document set. (See Figure 10.13.) For example, a word can be associated with a
transparent lens. When this lens is placed over an iconic representation of a set
of documents, it can cause all documents that do not countain a given word to
disappear. If a second lens representing another word is then laid over the first,
the lenses combine to act as a conjunction of the two words with the document
set, hiding any documents that do not contain both words. Additional informa-
tion can be adjusted dynamically. such as a minimum threshold for how often
the term occurs iu the documernits, or an ou-off switch for word stemming. For
example. Figure 10.13 shows a disjunctive query that finds cities with relatively
low housing prices or high annmual salaries. One lens “calls out” a clump of south-
ern California cities. labeling cach. Above that is a lens screening for cities with
average house price below $194,321 (the data is from 1990). and above this one is
a lens screening for cities with average annual pay above $28,477. This approach,
while promising. has not been evaluated in an information access setting.

10.5.5 Phrases and Proximity

In general, proximity information can be quite effective at improving precision of
searches. On the Web. the difference between a single-word query and a two-word
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exact phrase match can mean the difference between an unmanageable mess of
retrieved documents and a short list with mainly relevant documents.

A large number of methods for specifving phrases have been developed.
The syntax in LEXIS-NEXIS requires the proximity range to be specified with
an infix operator. For example, *white w/3 house’ means ‘white within 3 -words
of house, independent of order.” Exact proximity of phrases is specified by simply
listing one word beside the other. separated by a space. A popular method used
by Web search engines is the enclosure of the terms between quotation marks.
Shneiderman et al. [726] suggest providing a iist of entry labels, as suggested
above for specifying facets. The difference is, instead of a disjunction. the terms
on each line are treated as a phrase. This is suggested as a way to guide users
to more precise query specification.

The disadvantage of these methods is that they require exact match of
phrases, when it is often the case (in English) that one or a few words comes
between the terms of interest. For example, in most cases the user probably
wants ‘president’ and ‘lincoln’ to be adjacent, but still wants to catch cases of
the sort ‘President Abraham Lincoln.” Another consideration is whether or not
stemming is performed on the terms included in the phrase. The best solution
may be to allow users to specify exact phrases but treat them as small proximity
ranges, with perhaps an expenential fall-off in weight in terms of distance of
the terms. This has been shown to be a successful strategy in non-interactive
ranking algorithms [174]. It has also been sh:-wn that a combination of quorum
ranking of faceted queries with the restriction that the facets occur within a
small proximity range can dramatically improve precision of results [356. 566).

10.5.6 Natural Language and Free Text Queries

Statistical ranking algorithms have the advantage of allowing users to specify
queries naturally, without having to think about Boolean or other operators. But
they have the drawback of giving the user less feedback about and comtrol over
the results. Usually the result of a statistical ranking is the listing of documents
and the association of a score, probability, or percentage beside the title. Users
are given little feedback about why the document received the ranking it did and"
what the roles of the query terms are. This can be especially problematic if the
user is particularly interested in one of the query termns being present.

One search strategy that can help with this particular problem with sta-
tistical ranking algorithms is the specification of ‘mandatory’ terms within the
natural language query. This in effect helps the user control which terms are
considered important, rather than relying on the ranking algorithm to correctly
weight the query terms. But knowing to include a mandatory specification re-
quires the user to know about a particular command and how it works.

The preceding discussion assumes that a natural language query entered
by the user is treated as a bag of words, with stopwords removed, for the pur-
poses of document match. However, some systems attempt to parse natural
language queries in order to extract concepts to match against concepts in the
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text collection [399, 552, 748].

Alternatively, the natural language syntax of a question can be used to at-
tempt to answer the question. (Question answering in information access is dif-
ferent than that of database management systeins, since the information desired
is encoded within the text of documents rather than specified by the database
schema.) The Murax system [463] determines from the syntax of a question if
the user is asking for a person, place. or date. It then attempts to find sen-
tences within encyclopedia articles that contain noun phrases that appear in the
question. since these sentences are likely to contain the answer to the question.
For example, given the question *“Who was the Pulitzer Prize-winning novelist
that ran for mayor of New York City?,’ the system extracts the noun phrases
‘Pulitzer Prize," ‘winning novelist,” ‘mayor,” and ‘New York City." It then looks
for proper nouns representing people’s names (since this is a ‘who’ question) and
finds, among others, the following sentences:

The Armies of the Night (1968). a personal narrative of the 1967
peace march on the Pentagon, won Mailer the Pulitzer Prize and
the National Book Award.

In 1969 Mailer ran unsuccessfully as an independent candidate for
mayor of New York City.

Thus the two sentences link together the relevant noun phrases and the
system hypothesizes (correctly) from the title of the article in which the sentences
appear that Norman Mailer is the answer. '

Another approach to automated question answering is the FAQ finder sys-
tem which matches question-style queries against question-answer pairs on var-
ious topics [130]. The system uses a standard IR search to find the most likely
FAQ (frequently asked questions) files for the question and then matches the
terms in the question against the question portion of the question-answer pairs.

A less automated approach to question answering can be found in the Ask
Jeeves system [34]. This system makes use of hand-picked Web sites and matches
these to a predefined set of question types. A user’s query is first matched against
the question types. The user selects the most accurate rephrase of their question
and this in turn is linked to suggested Web sites. For example. the question *Who
is the leader of Sudan?’ is mapped into the question tvpe “Who is the head of
state of X (Sudan)?’" where the variable is replaced by a listbox of choices, with
Sudan the selected choice in this case. This is linked to a Web page that lists
current heads of state. The system also automatically substitutes in the name
‘Sudan’ in a query against that Web page, thus bringing the answer directly to
the user’s attention. The question is also sent to standard Web search engines.
However. a system is only as good as its question templates. For example a
question ‘Where can I find reviews of spas in Calistoga?’ matches the question
‘Where can I find X (reviews) of activities for children aged Y (1)?" and *“Where
can [ find a concise encyclopedia article on X (het springs)?’



CONTEXT 289

10.6 Context

This section discusses interface techniques for placing the current document set in
the context of other information tvpes. in order to make the document set more
understandable. This includes showing the relationship of the document set
to query terms, collection overviews, descriptive metadata. hyvperlink structure,
document structure. and to other documents within the set.

10.6.1 Document Surrogates

The most common way to show results for a query is to list information about
documents in order of their computed relevance to the query. Alternatively, for
pure Boolean ranking. documents are listed according to a metadata attribute,
such as date. Typically the document list consists of the document’s title and
a subset of important metadata. such as date, source. and length of the article.
In systems with statistical ranking, a numerical score or percentage is also often
shown alongside the title, where the score indicates a computed degree of match
or probability of relevance. This kind of information is sometimes referred to as
a document surrogate. See Figure 10.14 from [824].

Some systems provide users with a choice hetween a short and a detailed
view. The detailed view typically contains a summary or abstract. In biblio-
graphic systems, the author-written or service-written abstract is shown. Web
search engines automatically generate excerpts. usually extracting the first few
lines of non-markup text in the Web page.

In most interfaces, clicking on the document’s title or an iconic representa-
tion of the document shown beside the title will bring up a view of the document
itself, either in another window on the screen. or replacing the listing of search re-
sults. (In traditional bibliographic systems, the full text was unavailable online,
and only bibliographic records could be readily viewed.)

10.6.2 Query Term Hits Within Document Content

In systems in which the user can view the full text of a retrieved document. it is
often useful to highlight the occurrences of the terms or descriptors that match
those of the user’s query. It can also be useful for the system to scroll the view of
the document to the first passage that contains one or more of the query terms,
and highlight the matched terms in a contrasting color or reverse video. This
display is thought to help draw the user’s attention to the parts of the document
most likely to be relevant to the query. Highlighting of query terms has been
found time and again to be a useful feature for information access interfaces
[481],[542. p.31]. Color highlighting has also recently been found to be useful for
scanning lists of bibliographic records [52].
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Figure 10.14 " An example of a ranked list of titles and other document surrogate
information [824].

KWIC

A facility related to highlighting is the keyword-in-context (KWIC) document
surrogate. Sentence fragments, full sentences. or groups of sentences that contain
query terms are extracted from the full text and presented for viewing along with
other kinds of surrogate information (such as document title and abstract). Note
that a KWIC listing is different than an abstract. An abstract summarizes the
main topics of the document but might not contain references to the terms within
the query. A KWIC extract shows sentences that summarize the ways the query
terms are used within the document. This display can show not only which
subsets of query terms occur in the retrieved documents, but also the context
they appear in with respect to one another.

Tradeoff decisions must be made between how many lines of text to show
and which lines to display. It is not known which contexts are best selected
for viewing but results from text summarization research suggest that the best
fragments to show are those that appear near the beginning of the document and
that contain the largest subset of query terms [464]. If users have specified which



